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Abbreviations

BC Bladder Cancer

BCG Bacillus Calmette-Guerin

CIS Carcinoma in-situ

GEO Gene Expression Omnibus

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

MIBC Muscle Invasive Bladder Cancer

OMIM Online Mendelian Inheritance in Man

PE Pathway Enrichment

PPI Protein-Protein Interaction

RDBMS Relational Database Management System

ROR Ruby on Rails

TCGA The Cancer Genome Atlas

TNM Tumor-Node-Metastasis
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Abstract 
Background

Bladder Cancer (BC) has two distinct phenotypes. Non-muscle invasive BC has good prognosis and is treated by tumor 
resection and intravesical therapy, whereas muscle-invasive BC has poor prognosis and requires radical cystectomy 
combined with cisplatin-based chemotherapy. High-throughput sequencing technologies allow identification of individual 
molecular signatures to characterize the invasive phenotype.

Objective

Based on this background the objective of this thesis comprises of three parts. The first aim of the thesis was to characterize 
muscle-invasive BC on a molecular level by incorporating signatures from literature and omics profiles. The second aim 
was to evaluate the performance of pathway-enrichment obtained from two bioinformatics tools ImPAla and ClueGO. The 
third aim shows the use of bioinformatics in order to identify altered pathways relevant to ageing.

Materials

Public domain -omics signatures and molecular features associated to muscle-invasive BC were derived from literature 
mining to provide protein-coding genes. These features were integrated in a protein-interaction network to obtain functional 
pathways relevant to the phenotype. Pathway-enrichment was performed using ClueGO and ImPAla tools. The resulting 
pathway terms were filtered according to criterion: multiple comparison corrected p-value <0.05.

Results

In the first part of the thesis, the protein-interactions and pathway-enrichment yielded 14 significant pathway terms. Three 
pathway terms were not previously reported in muscle-invasive BC. The novel disease-associated pathways were regulation 
of actin-cytoskeleton, neurotrophin-signalling pathway and endocytosis. In the second part, 292 pathways were obtained 
from ClueGO and 471 pathways from ImPAla software. Comparison of the results obtained by the two applications yielded 
152 pathway-terms with the same pathway name. 137 ClueGO pathway-terms were similar to 251 ImPAla pathways. In the 
last part, the results from a bioinformatics analysis of urinary-peptidomics data discovered a pathway-term “degradation of 
insulin-like growth factor-binding proteins” that was unique in the context of pathological ageing.

Conclusion

The results of this thesis suggest that there is a complex interplay between pathways characterizing the muscle-invasive 
phenotype of BC. Further experimental validation of the three novel pathways with respect to progression and treatment 
response is indicated. In addition, the comparison of two prominent pathway enrichment tools ClueGO and ImPAla showed 
that ClueGO has better performance than ImPAla in pathway-enrichment analysis since the output is less redundant 
and contains all the biologically significant information. Lastly, molecular pathways enriched in normal and pathological 
ageing demonstrate that with the help of appropriate peptidomics technologies, urine could be used as a useful source of 
information in ageing research.
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Introduction
Urothelial bladder carcinoma is a common malignancy 
of the urinary tract system and comprises of two distinct 
clinical phenotypes, non muscle-invasive bladder cancer 
and muscle-invasive tumors. Muscle-invasive bladder 
tumors are treated with pre-operative (neoadjuvant) cis-
platin-based chemotherapy followed by removal of the 
bladder, named as “radical cystectomy” [1]. However, 
since a significant number of patients do not respond to 
chemotherapy treatment, a detailed investigation of the 
tumor molecular signature is required to select responsive 
patients for bladder cancer treatment [2]. A better 
understanding of muscle invasive bladder cancer might be 
achieved by combining information obtained from individual 
biomarkers measured at the DNA, RNA and/or protein 
levels [3]. Along this background, the comprehensive 
characterization of altered molecular pathways provides 
significant clinical relevance in order to choose optimum 
diagnosis and treatment regimens for bladder cancer 
patients.

Variable for individual bladder cancer patients, initial 
symptoms include hematuria and flank pain [4,5]. 
Cystoscopy is the gold standard diagnostic procedure with 
a reported sensitivity of 62-84% and specificity of 43-98%. 
This wide variability in sensitivity and specificity indicates a 
significant inter-operator variability [6]. Non muscle-invasive 
bladder cancer comprises of distinct forms [7-9]:

a. Ta stage - the cancer is just in the innermost layer of the 
bladder lining. 

b. T1 stage - the cancer has started to grow into the 
connective tissue beneath the bladder lining 

c. Carcinoma in-situ (CIS) - very early, high grade, cancer 
cells are only in the innermost layer of the bladder lining 
[9]. 

Papillary tumors that are confined to the mucosa and that 
invade the lamina propria of the bladder are classified 
as stages Ta and T1 according to the Tumor-Node-
Metastasis (TNM) classification system [10]. The papillary 
carcinoma (Ta and T1) phenotype has a tendency to 
recur locally and it rarely invades the bladder basement 
membrane or metastasizes to adjacent organs. However, 
the flat carcinoma in situ (CIS) is often multifocal and is a 
dangerous lesion with a high tendency for bladder muscle 
invasion and metastasis [11]. Treatment of non-muscle 
invasive bladder carcinoma (Ta, T1 and CIS) involves 
endoscopic transurethral resection of visible tumors 
followed by adjuvant treatment with intravesical instillation 
therapy (Mitomycin/Epirubicin or Bacillus Calmette-Guerin 
(BCG)) depending on the estimated risk for progression. 
Irrespective of aggressive treatment and vigorous follow-
up, 70% of these tumors recur, and 25% of high-grade 
non-muscle invasive cancers (CIS) progress into invasive 
phenotypes [12,13].

Muscle invasive bladder cancers are advanced cancer 

stages and are classified as “T2- T4” according to the 
Tumor-Node-Metastasis classification system. 

a. T2 stage - is when the cancer has spread into the 
muscle layer of the bladder 

b. T3 stage - is when the tumor has grown through the 
muscle layer 

c. T4 stage - is when the cancer has spread into the 
prostrate, uterus or vagina, or into the wall of the pelvis 
or abdomen

Furthermore, muscle invasive bladder tumors are also 
distinguished into three distinct molecular subtypes that 
have widely variable clinical outcomes and responses to 
conventional chemotherapy treatments:

a. Basal subtypes 

b. Luminal subtypes 

c. “p53-like” tumors [14]

The basal muscle invasive bladder cancer subtypes are 
susceptible to have more invasive and metastatic disease 
at initial diagnosis and are associated with shorter disease-
specific and overall survival. The biomarkers for the basal 
muscle invasive bladder cancer subtype include CD44 
antigen (CD44), Keratin, type II cytoskeletal 5 (KRT5), 
Keratin, type II cytoskeletal 72 (KRT72), Keratin, type I 
cytoskeletal 14 (KRT14) and Cadherin-3 (CDH3). The 
luminal muscle invasive bladder cancer subtypes are 
enriched with activating fibroblast growth factor receptor 
3 (FGFR3) and human epidermal growth factor receptor 3 
(ERBB3) mutations and Receptor tyrosine-protein kinase 
erbB-2 (ERBB2) amplifications, and the gene expression 
profiles are controlled by peroxisome proliferator activator 
receptor γ (PPARγ) and estrogen receptor activation. 
The wild-type p53 is required for DNA damage induced 
apoptosis and is a central tenet in cancer biology [15]. 
Therefore, it is interesting that the de-novo and induced 
chemoresistance in muscle invasive bladder cancers was 
associated with wild-type p53 gene expression signatures. 
Nevertheless, TP53 mutation frequencies are similar in all 
three subtypes of muscle invasive bladder cancers (basal, 
luminal and p53-like), indicating that wild-type p53 was not 
responsible for the baseline and chemotherapy induced 
p53-like gene expression. Hence, it is proposed that ‘‘p53-
like tumors’’ as measured by mRNA expression would be 
a more accurate predictor of de-novo and induced muscle 
invasive bladder cancers chemoresistance than would 
analyses of TP53 mutational status [16]. The determination 
of the molecular basis of these p53-like signatures is not yet 
defined and that could overcome de novo and/ or prevent 
acquired chemoresistance [14].

The most important point for the planning of radical 
cystectomy in bladder cancer tumors is the depth of 
invasion or muscular involvement (T category, P stage) [17]. 
Various treatments have proved useful for disease control 
in some patients with regional bladder cancer but the most 
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common procedure for this situation is radical cystectomy 
[18]. A recent report highlights significant errors in clinical 
staging of patients with bladder cancer that underwent 
radical cystectomy [19]. This staging error of cystectomy in 
the bladder tumors may cause very important mistakes on 
the decision for radical surgery treatment. Hence, obtaining 
an accurate staging diagnosis is particularly crucial in 
patient selection for surgical treatments (i.e. cystectomy) 
and the choice of chemotherapy. Due to the invasive 
procedure of cystoscopy and in order to improve accuracy 
in the phenotype detection, blood or urine biomarkers could 
support clinical assessment [20].

High-throughput experimental platform technologies range 
from genomic sequencing to epigenomic, transcriptomic, 
proteomic and metabolomic profiling in order to 
characterize the molecular aspects of individual clinical 
phenotypes [21-28]. Genomic sequencing comprises of 
applying recombinant DNA, DNA sequencing methods, 
and bioinformatics to sequence, assemble, and analyze 
the function and structure of “genomes” (i.e. the complete 
set of DNA within a single cell of an organism). Epigenomic 
sequencing is the determination of key functional elements 
that regulate gene expression in a cell - Epigenomes 
provide information about the patterns in which structures 
such as methyl groups tag DNA and histones (the proteins 
around which DNA is packaged to form the chromatin), and 
about interactions between distant sections of chromatin). 
Transcriptomics is the sequencing and quantification of 
transcripts - mRNA and microRNA or miRNA. Proteomics 
is the sequencing and quantification of the proteome 
and peptidome, and metabolomics is the technique of 
identifying and quantifying of metabolites. These techniques 
provide datasets that comprise of DNA-mutations, DNA-
methylations, mRNAs, miRNA, proteins, peptides and 
metabolites. The advent of these approaches that generate 
a comprehensive view of the molecular landscape for a 
biological sample has introduced a paradigm shift in the 
way diseases are perceived [21,22,29].

A variety of datasets for such molecular characterizations 
have become available that are stored in public databases, 
for e.g. in Array Express [30] or Gene Expression Omnibus 
(GEO) [31], which is a database that stores mRNA and 
miRNA datasets from transcriptomics experiments, 
Human Proteinpedia is a public repository that provides 
information on proteomics datasets [32,33], Human Protein 
Atlas (http://www.proteinatlas.org/), which is an online 
portal that contains information on immunohistochemically 
validated proteins, or large data consolidation resources 
such as GeneCards [34] that provides information for 
genomic, proteomic, transcriptomic, genetic and functional 
information on all known and predicted human genes. This 
database aims to provide a quick overview of the current 
available biomedical information about the searched gene, 
including the human genes, the encoded proteins, and the 
relevant diseases.

In regard to disease specific omics data, valuable general 
sources in oncology include The Cancer Genome Atlas 

(TCGA) (http://cancergenome.nih.gov/), Oncomine [35], 
and Online Mendelian Inheritance in Man (OMIM) [36]. The 
Cancer Genome Atlas oncology portal currently lists single 
nucleotide polymorphism, methylation data, mutations, 
mRNAs, miRNAs and proteins relevant to bladder cancer. 
A recent report presents a systems biology approach for 
the analysis of the muscle invasive bladder cancer dataset 
contained in The Cancer Genome Atlas [37]. Another 
database for bladder cancer that provides molecular 
features in regard to miRNAs identified in literature is also 
available [38,39]. In addition, a user-friendly analysis tool is 
also available and allows the evaluation of gene expression 
profiles determined by microarray studies across bladder 
cancer patients [40].

Though omics profiling has provided an abundance of 
data, technical boundaries involving incompleteness of 
the individual molecular datasets together with the static 
representation of cellular activity limit the insights on 
molecular processes and their interaction dynamics [41-43].

A large number of biological pathway analysis tools are 
available, including KEGG [44], PANTHER [45], REACTOME 
[46] and AmiGO [47] described in PathGuide (http://www.
pathguide.org/), and allow detection of significant metabolic 
and signaling pathways. Albeit there are several well curated 
and reliable pathway database resources [48], significant 
efforts have been taken to expand biological pathway 
coverage beyond any single pathway data source. This 
is frequently carried out by integrating different pathway 
sources to build high quality integrative pathway models. 
However, biological data integration from heterogeneous 
sources has been challenging due to variability at the 
syntactic and semantic level. Syntactic variability is due 
to heterogeneity of molecular feature and pathway data 
formats, representation schemas and retrieval methods. 
Semantic variability is due to incompatible pathway names, 
signaling event representations and molecular identifiers. 
For example, different pathway databases may choose 
to provide information on post-translation modifications, 
interacting proteins within a complex, or cellular location. 
Hence all these limitations have inhibited the growth of high 
quality integrative pathway models [49-51].

Previous omics studies report biomarkers associated with 
bladder cancer, and therapeutic targets that could allow 
development of personalized therapies [52-56]. However, 
the information gathered from these large number of omics 
experiments is not fully exploited, as the datasets generated 
are either scattered in many publications and databases or 
held in supplementary data files. 

Therefore, the aim of this thesis was primarily to characterize 
muscle invasive bladder carcinoma on a molecular level by 
incorporating scientific literature and omics data. In addition, 
the objective was to evaluate the performance of pathway 
enrichment analysis obtained from two bioinformatics 
tools ImPAla and ClueGO. Thirdly, the goal was to use 
bioinformatics and systems biology approaches in order to 
identify significant molecular pathways in age-associated 
diseases.
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Methods
Data sources for characterizing bladder cancer 
pathophysiology 
In order to retrieve molecular features associated with 
muscle invasive bladder cancer, “National Center for 
Biotechnology Information” (NCBI) PubMed, Web of 
Science, Google Scholar and the omics repositories Gene 
Expression Omnibus (GEO) [31] and ArrayExpress [30] were 
manually queried. Since the study involved the molecular 
characterization of muscle invasive bladder cancer, the 
criteria for selecting keywords depended specifically in 
regard to the muscle invasive phenotype. The keywords 
for the literature search included “bladder OR urothelial OR 
transitional cell” AND “neoplasm OR tumor OR carcinoma” 
AND “muscle” AND “invas* OR aggress* OR progress* 
OR inflammation” (Database version of June, 2015). The 
list of publications relevant to muscle invasion in bladder 
cancer was isolated from the complete list of retrieved 
papers. Publications were further screened for adequacy in 
sample size (at least 50 samples included in study design), 
magnitude of differential abundance (>2-fold change for 
proteomics, transcriptomics, metabolomics and miRNAs), 
False Discovery Rate <0.1 for mutations, p-values<0.05 
for methylation and -omics studies, in addition to the 
specific phenotypic conditions; T2a/b, T3a/b, T4a/b. The 
muscle invasive bladder cancer specific molecular features 
retrieved from the publications comprised of various sources 
such as DNA-mutations, DNA-methylation, mRNAs, 
miRNAs, proteins (immunohistochemistry validations 
and proteomics) and metabolites. The features were then 
combined for further systems biology analysis. 

Protein-protein interactions 
In order to retrieve protein-protein interaction information 
for the muscle invasive bladder cancer associated proteins, 
protein-protein interaction databases including IntAct [57], 
BioGRID [58], STRING [59] and Reactome [46] were 
queried. By downloading the protein interaction information 
contained in each database, an integrated database was 
developed in order to contain all available non-redundant 
human protein-protein interaction information. This 
unique human protein list along with the protein-protein 
interactions information were then downloaded into the 
Cytoscape [60-61] software to yield the human interactome 
based on experimental evidence. The proteins relative to 
muscle invasive bladder cancer were then selected from 
this human interactome and were put on a separate list. 
Muscle invasive bladder cancer proteins that had at least 
one binding partner in the list of muscle invasive bladder 
cancer specific proteins were retained in order to generate 
the muscle invasive bladder cancer specific interactome. 

Pathway enrichment 
To retrieve molecular pathway information for muscle 
invasive bladder cancer, proteins from the muscle invasive 
bladder cancer interactome were subjected to pathway 
enrichment analysis. This analysis used two additional 

sub-applications from Cytoscape; ClueGO [62] and 
CluePedia [63]. The statistical criterion used in generating 
molecular pathways included a two-sided hypergeometry 
test. Information from pathway databases such as Kyoto 
Encyclopedia of Genes and Genomes [44]and Reactome 
[46] databases was used in retrieving significant pathways 
associated to muscle invasive bladder cancer with a 
Bonferroni corrected p-value<0.05. In addition, the list of 
pathways was inspected manually and redundant pathway-
terms were combined hereby. The filtered list of pathway-
terms was then divided into previously known pathways 
and novel findings in the context of muscle invasive bladder 
carcinoma. 

Comparison of pathway enrichment tools ClueGO 
and ImPAla 
To evaluate the performance of pathway enrichment, 
ClueGO and ImPAla enrichment tools were compared. 
ClueGO provides an advantage to perform cluster 
comparisons for pathway enrichment and allows the option 
to separately input up and down regulated molecules in 
the software. In addition, ClueGO provides an optional 
redundancy reduction feature (“Fusion”) to assess Gene 
Ontology (GO) terms that share similar associated features 
in a parent-child relation. This option was selected in the 
ClueGO pathway enrichment analysis to eliminate the 
redundant pathway terms. In contrast, ImPAla does not 
provide an option of redundancy reduction for pathway 
terms. The pathway databases selected for enrichment 
were KEGG. The statistical selection criterion taken into 
account for the enrichment analysis was the corrected 
for multiple comparisons p-value<0.05. The overlap 
assessment between the pathway outputs was performed 
manually.

Results
Publication 1: protein interactome for muscle 
invasive bladder cancer
In the present study the bioinformatics model of proteomic 
changes in bladder cancer involved integrating available 
public domain data sets from PubMed, Google scholar and 
Web of science in the context of bladder muscle-invasive 
carcinoma (Figure 1).

In the first step of this analysis, the data collected was filtered 
using statistical measurements to include fold-change 
values, p-values and sample size for the specific phenotype 
of muscle invasive bladder cancer. The molecular features 
were then incorporated into systems biology tools to model 
protein-protein interaction networks, and further mapping 
them to biological molecular pathways.

The results revealed fifteen pathways as being affected in 
the progressive disease. Eleven from these pathways were 
reported previously and four pathways were novel findings 
in the context of muscle invasive bladder cancer (Figure 
2). The fact that the majority of pathways identified by our 
analysis are involved in muscle invasive bladder cancer 
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supports the validity of our approach. Moreover, the four 
novel pathways revealed by our analysis could be validated 
experimentally and offer new targets for biomarker discovery 
or therapy of muscle invasive bladder cancer (Table 1).

Publication 2: Comparison of ClueGO and ImPAla 
for integrated pathway enrichment analysis
In this study, the total number of Kyoto Encyclopaedia of 
Genes and Genomes (KEGG) and Reactome pathway 
terms obtained from ClueGO was 292. ImPAla produced 
471 pathways (Table 2).

By comparing the pathway results, 152 pathway terms 
exactly overlapped in ClueGO and ImPAla. 137 pathway 
terms from ClueGO were highly similar to 251 ImPAla 
pathway terms. Therefore, the total calculated overlap of 
pathways between the two tools equalled to 289 ClueGO 
pathways that correspond to 403 ImPAla enriched 
pathways. In addition, the software also produced unique 
pathway terms. There were 3 unique pathways from the 
total 292 ClueGO pathway terms whereas 68 pathways 
were unique from ImPAla. Both the enrichment tools 
yielded redundancy in the output results, however results 
from ImPAla were characterized by higher redundancies in 
pathway terms (for e.g. the pathway terms “DNA replication”, 
“synthesis of DNA”). Moreover, from the unique set of 68 
ImPAla pathway terms, 12 pathway terms were not related 
in the context of bladder cancer. Some of these pathways 
include alcoholism, amphetamine addiction, inflammatory 
bowel disease (IBD), malaria, viral myocarditis and prion 
diseases. On the contrary, the 3 unique pathways obtained 
by ClueGO were relevant to bladder cancer. It was also 
noted that the overlapping pathway terms from ImPAla and 
ClueGO contained pathway names that are not relevant in 
the context of bladder cancer. These common terms totalled 
to 34 ImPAla and 30 ClueGO pathway terms. The common 
pathway terms included oocyte meiosis, tuberculosis, type 
II diabetes mellitus, circadian clock and shigellosis. The 

comparison of significant overlapping pathways obtained 
from ClueGO and ImPAla is represented as a Venn diagram 
in (Figure 3).

Publication 3: Identification of urinary age-
specific peptides in a healthy population
In the last section of the thesis, the bioinformatics approach 
used in the molecular characterization of bladder cancer 
muscle invasion was applied to a peptidomics dataset 
relevant to ageing associated disorders.

Ageing is a complex systemic process and “omics” 
approaches aiming at the study of multiple features 
simultaneously have been applied to unravel novel 
underlying molecular processes [64]. Proteomics studies 
confirmed that oxidative stress occurs ubiquitously during 
ageing [65]. However, a shortcoming in most of these 
studies was the use of animal models. The scarcity of 
human subjects can be largely attributed to the inability in 
obtaining appropriate tissue samples. Thus, a way forward 
in ageing research could be the investigation of readily 
available body fluids.

In this study, a small-scale urinary peptidome of 324 healthy 
individuals was investigated. The patients aged between 
2 to 73 years and showed the feasibility to obtain high-
resolution molecular information readily available from body 
fluids such as urine [66].

Subsequently, the urinary peptidome profiles of 11,560 
individuals were investigated in an attempt to identify specific 
ageing-associated alterations and to elucidate pathological 
derailment in normal ageing (Table 3). The results obtained 
showed perturbations mainly in collagen homeostasis, 
trafficking of toll-like receptors and endosomal pathways 
that were significantly associated to the healthy ageing 
group. Moreover, degradation of insulin-like growth factor-
binding proteins was a unique identification deregulated in 
pathological ageing cohorts (Figures 4a & 4b).

Figure 1:  Data assembly workflow.

PubMed, Google Scholar and Web of Science literature analysis and Omics data source screening for the systems based analysis in 
muscle invasive bladder cancer.
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Figure 2: Muscle Invasive Bladder carcinoma interactome.

Nodes (circles) in orange denote pathways identified as relevant in both literature and enrichment analysis, nodes in blue depicts path-
ways of relevance according to enrichment analysis.

Figure 3: Venn Diagram represents the overlap of pathway terms between ClueGO and ImPAla software. All pathways enriched are 
selected based on p-value < 0.05
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Figure 4a: Molecular pathways associated with pathological ageing. 

The network represents each pathway as individual octagonal node, while the circled nodes represent the predicted proteases that were 
targeted from the identified urinary peptides denoted in purple diamond nodes. The edges (links) between pathways denote an approxi-
mation of biological interaction between the pathways based on the cross-pathway feature overlap.

Figure 4b: Molecular pathways associated with normal ageing. 

Legends for the diamond nodes with a suffix of “-C/N” represent the peptide’s cleavage site; i.e. “-C” for C-terminus and “-N” for the 
N-terminus.
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Table 1: Abbreviations for protein coding genes described in Figure 2.

LAMB3 – Laminin subunit beta-3 LAMA3 - Laminin subunit alpha-3

COL6A3 – Collagen alpha-3(VI) COL1A2 - Collagen alpha-2(I)

chain TNC - Tenascin chain LAMC2 - Laminin

COL4A6 - Collagen alpha-6(IV) chain gamma-2 ITGA5 - Integrin

COL5A3 - Collagen alpha-3(V) chain FN1 - Fibronectin

COL3A1 - Collagen alpha-1(III) chain ITGB4 - Integrin beta-4

LAMC1 - Laminin subunit gamma-1 ITGA6 - Integrin alpha

COL5A1 - Collagen alpha-1(V) chain MYLK - Myosin light chain kinase, smooth

THBS1 - Thrombospondin-1 muscle ACTN1 - Alpha-actinin-

ACTN4 - Alpha-actinin-4 ACTB - Actin, cytoplasmic 1 FGF2

FGFR1-Fibroblast growth factor receptor 1 - Fibroblast growth factor 2

FGF1 - Fibroblast growth factor 1 VEGFA - Vascular endothelial growth factor

BCL2 - Apoptosis regulator Bcl-2 PTEN - Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and 
dual-specificity protein phosphatase PTEN

CCND1 - G1/S-specific cyclin-D1 BAX - Apoptosis regulator BAX

CTNNB1 - Catenin beta-1 ERBB2 - Receptor tyrosine-protein kinase erbB-2

PDGFA - Platelet-derived growth factor subunit A MAPK1 - Mitogen-activated protein kinase 1

BAD - Bcl2-associated agonist of cell death CTNND1 - Catenin delta-1

F11R - Junctional adhesion molecule A MET - Hepatocyte growth factor receptor

KDR - Vascular endothelial growth factor receptor 2 CAV1 - Caveolin-1

JUN - Transcription factor AP-1 BDNF - Brain-derived neurotrophic factor

GAB1 - GRB2-associated-binding protein 1 YWHAZ - 14-3-3 protein zeta/del

CDKN1A - Cyclin-dependent kinase inhibitor 1 CDKN2A - Cyclin-dependent kinase inhibitor 2A

CDK2 - Cyclin-dependent kinase 2 GNAI3 - Guanine nucleotide-binding protein G(k) subunit alpha

TGFBR2 - TGF-beta receptor type-2 FGFR3 - Fibroblast growth factor receptor 3

PRKCA - Protein kinase C alpha type HRAS - GTPase Hras

CDK4 - Cyclin-dependent kinase 4 FAS - Tumor necrosis factor receptor superfamily member 6

TP53 - Cellular tumor antigen p53 ABL1 - Tyrosine-protein kinase ABL1

CDKN1B - Cyclin-dependent kinase inhibitor 1B MDM2 - E3 ubiquitin-protein ligase Mdm2

TGFB3 - Transforming growth factor beta-3 ERBB4 - Receptor tyrosine-protein kinase erbB-4

ERBB3 - Receptor tyrosine-protein kinase erbB-3 CASP3 - Caspase-3

DUSP1 - Dual specificity protein phosphatase 1 ARAF - Serine/threonine-protein kinase A-Raf

PTGS2 - Prostaglandin G/H synthase 2 PRKCG - Protein kinase C gamma type

TGFBR1 - TGF-beta receptor type-1 ITPR3 - Inositol 1,4,5-trisphosphate receptor type 3

PRKCZ - Protein kinase C zeta type TGFBR2 - TGF-beta receptor type-2
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Table 2: General information for the results obtained from the pathway enrichment analysis.

Software Availability User Input p-value Correction Method Total Pathway Output
ClueGO Cytoscape plugin 435 entries Bonferroni 292

ImPAla Web-based 435 entries Benjamini Hochberg 471

Table 3: Abbreviations for protease and peptide names in figure 4a and 4b.

Protease Peptides

MMP2 - 72 kDa type IV collagenase COL1A2-N - Collagen alpha-2(I) chain

MMP14 - Matrix metalloproteinase-14 COL3A1-N - Collagen alpha-1(III) chain

MMP8 - Neutrophil collagenase COL1A2-C - Collagen alpha-2(I) chain

ADAMTS5 - A disintegrin and metalloproteinase with thrombospondin motifs 5 COL3A1-C - Collagen alpha-1(III) chain

MMP9 - Matrix metalloproteinase-9 COL4A3-C - Collagen alpha-3(IV) chain

CTSK - Cathepsin K COL1A1-N - Collagen alpha-1(I) chain

MMP7 - Matrilysin COL25A1-N - Collagen alpha-1(XXV) chain

MMP13 - Collagenase 3 COL6A1-C - Collagen alpha-1(VI) chain

CTSL1 - Cathepsin L1 COL2A1-C - Collagen alpha-1(II) chain

CTSS - Cathepsin S COL1A1-C - Collagen alpha-1(I) chain

MMP12 - Macrophage metalloelastase COL9A3-N - Collagen alpha-3(IX) chain

ADAMTS4 - A disintegrin and metalloproteinase with thrombospondin motifs 4 COL4A1-C - Collagen alpha-1(IV) chain

PLC - 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 COL25A1-C - Collagen alpha-1(XXV) chain

F2 - Prothrombin COL16A1

MMP25 - Matrix metalloproteinase-25
CAPN1 - Calpain-1 catalytic subunit

Discussion
For an early diagnosis and successful targeted treatment, 
molecular characterization of individual disease phenotypes 
and prediction of novel biomarkers is essential. By the use 
of network biology approaches such as bioinformatics 
analysis tools, pathway databases, and statistical criteria, 
a comprehensive understanding of the complex molecular 
mechanisms in genetic disorders can be achieved. This 
would be advantageous in better prognosis and early 
clinical intervention of the individual phenotype. Based on 
this background, the aim of this thesis was to characterize 
muscle invasive bladder carcinoma on a molecular level by 
incorporating signatures from scientific literature screening 
and omics profiling. The characterization was achieved 
by integrating collected data to perform protein-protein 
interactions and pathway enrichment analysis.

In first part, of this study, automated data retrieval from the 
literature resulted in a first collection of molecular features 
associated with muscle invasive bladder cancer, and, 
combination with omics profiling data, allowed the creation 
of a mechanistic (pathway) map linked to muscle invasive 

bladder cancer. By deriving bladder cancer-associated 
protein coding genes on the basis of such pathway maps 
provides a systematic foundation for experimental analysis 
regarding association with development of muscle-invasive 
disease.

In the second part of the thesis, the performance of 
pathway enrichment was compared for significant pathway 
outputs yielded from ClueGO and ImPAla in the context 
to bladder cancer. Only two widely used and up-to-date 
pathway database resources, KEGG and Reactome were 
selected. Adding more pathway databases in the analysis 
would introduce higher redundancy in pathway outputs. 
In regard to manually updating database sources, the 
ClueGO application allows users to update individual 
pathway database source in order to obtain latest data 
whereas ImPAla is an omics-integration focusing towards 
metabolomics integration and pathway enrichment 
application that contains the latest update of January 2015 
[67]. In addition, ImPAla also allows the incorporation of 
differential expression information for molecules such as 
magnitude of differentially expressed fold changes and 
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multiple comparison corrected p-values. Nevertheless, 
ImPAla does not offer the option to input separately up 
and down regulated genes and does not predict activation/
deactivation of an affected pathway in contrast to ClueGO. In 
addition, ClueGO provides users to analyze different omics 
datasets such as genes, mRNAs, proteins, single nucleotide 
polymorphisms, metabolites and miRNAs. This gives the 
advantage in using one analysis and visualization tool for 
all high-throughput sequencing and profiling experiments. 
Furthermore, having a single analysis tool also helps to 
prevent errors due to compatibility when transferring data 
between different software applications. Therefore, ClueGO 
is preferable to ImPAla for pathway enrichment and in the 
comprehensive characterization of molecular diseases.

In the last section of the thesis, the analysis of the urinary 
peptidome of ageing-associated peptides was detected. 
Differentially expressed age-associated peptides were 
identified using capillary electrophoresis coupled with mass 
spectrometry (CE-MS). The Proteasix software was then 
used in order to predict proteases that cleaved the identified 
urinary age associated peptides [68]. The generated data) 
were then subjected to systems biology and bioinformatics 
approaches such as pathway enrichment analysis in order to 
characterize molecular pathways that were associated with 
normal and pathological ageing. Findings demonstrated 
that with the help of appropriate peptidomics technologies, 
urine could be used as a powerful biological fluid in ageing 
research.

Conclusion
In conclusion, it is demonstrated in this thesis that by 
using bioinformatics and systems biology methodologies 
a better understanding of complex molecular mechanisms 
such as tumor invasion in bladder cancer is possible. In 
addition, ClueGO pathway enrichment tool has better 
performance than ImPAla in pathway enrichment analysis 
since the pathway output is less redundant and contains 
all the biologically significant information. The combination 
of a systems biology approach and individual proteins 
biochemical features offers a thorough molecular description 
of muscle invasive bladder cancer.
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