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Abstract
Mathematical models provide important practical insights into the epidemiology of infectious diseases, and concepts 
derived from such models are widely used in the design of infection control programmes. This project was aimed at directly 
estimating the parameters of a dynamic transmission model using likelihood-based estimation methods, by fitting the model 
to age-specific influenza-like-illness (ILI) incidence over multiple influenza seasons. In an attempt to achieve the goal of this 
project, the dynamic transmission model for seasonal influenza of Vynnycky et al. [1] was adopted and the various model 
parameters estimated. Weighted Least Squares and Maximum Likelihood estimation methods were applied for the model 
parameters estimation. From the obtained estimates of these parameters, estimates for the average basic reproduction 
numbers, which is an important measure used in infectious disease control, immunization and eradication programmes, 
were also derived. This modelling approach is an improvement to the previous approaches where the parameter values 
of seasonal influenza models were commonly chosen ad hoc though projections based on such models heavily rely on 
the assumed input parameter values. Moreover, there exists considerable uncertainty over the most appropriate values 
for parameters for such models. The importance of parameter estimation and accounting for uncertainty when using 
dynamic transmission model outcomes as input for economic evaluations related to infectious diseases have already been 
highlighted by several previous studies [2,3].
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Introduction
Influenza is a viral infection which effects human 
populations both through regular seasonal epidemics and 
occasional pandemics. Seasonal influenza is a contagious 
respiratory illness that strikes every year while pandemic 
influenza is a global outbreak. In temperate regions, 
seasonal influenza tends to occur as one annual epidemic 
that occurs in the winter months i.e. December to March 
in the Northern Hemisphere and June to September in the 
Southern Hemisphere [4]. In Europe and in Belgium, annual 
epidemics of influenza occur mostly during the winter 
months, usually between week 40 and week 20 of the 
following year. However the patterns of these epidemics are 
highly variable from year to year in terms of the beginning 
of the epidemic, its duration, intensity, and influenza strains 
that circulate. Thus, numbers of cases and deaths from 
influenza, as well as the most affected age groups, vary 
each season [5].

Seasonal influenza is a major burden on public health 
worldwide. In 2012, WHO estimated that annually it attacks 
5-10% of adults and 20-30% of children globally and causes 
significant levels of illness, hospitalization and death [6]. 
Hanquet et al. [5] noted that the clinical and economic 
burden of seasonal influenza is frequently underestimated, 
as cases and deaths caused by influenza are rarely 
identified or coded as influenza outcomes, and only a 
minority of cases is confirmed by laboratory testing. The 
most common influenza-related outcomes are influenza-
like illnesses (ILI), acute respiratory infections, pneumonia 
and all-cause deaths.

Vaccination is the most common and most effective public 
health responses to influenza though there exists other 
non-pharmaceutical interventions for the prevention and 
control of influenza infection such as mask use, hand 
hygiene, and social isolation. The effectiveness of these 
non-pharmaceutical interventions is uncertain and depends 
on behavioral responses in the general population which 
may vary across settings [7]. In addition, such measures 
are unlikely to be sufficient to prevent sustained influenza 
transmission both in pandemic and seasonal epidemic 
years [8]. Vaccination protects against influenza by 
stimulating an antigen-specific immune response. Two 
different types of influenza vaccine are available: the 
trivalent inactivated influenza vaccine (TIV) and the 
trivalent live-attenuated influenza vaccine (LAIV). TIV is 
administered via intramuscular or intradermal injection while 
LAIV is administered intranasally via a sprayer. The current 
Health Council recommendations for seasonal influenza 
vaccination in Belgium is limited to persons at higher risk 
of influenza complications, including, persons aged above 
50 years, health care workers, pregnant women and poultry 
and pork farmers [9].

Various studies have been conducted to evaluate the 
impact of various childhood vaccination strategies. For 
instance, Vynnycky et al. [1] applied an age-structured 
model to estimate the long-term impact of vaccinating 

children of either pre-school or school age on the burden 
of seasonal influenza (A and B) in the United Kingdom and 
to assess the effects of different contact patterns between 
children and adults. Beutels et al. [10] and Goeyvaerts 
et al. [11] developed a dynamic transmission model for 
seasonal influenza to evaluate the impact of various 
childhood vaccination strategies by fitting to observed age 
and time specific Influenza-Like-Illness (ILI) incidence in 
Belgium. The dynamic model was implemented in MATLAB 
and a global search algorithm was used to estimate the 
model parameters by minimizing a weighted least squares 
criterium for the ILI data. This procedure turned out to be 
highly sensitive to the initial values and was only able to 
identify local optima. The goal of this project is to explore 
alternative estimation methods for the influenza model 
parameters in the free statistical programming language R. 
In this regard, we apply the Weighted Least Squares and 
Maximum Likelihood estimation methods.

Methodology
Data
Weekly data on Influenza-Like-Illness (ILI) are collected 
from a sentinel network of General Practitioners (GPs) in 
Belgium coordinated by the Scientific Institute of Public 
Health. In 2009, the network involved around 200 GPs, 
representing approximately 1.8% of all Belgian GPs, 
reporting on ILI consultations [5]. The GPs report weekly, on 
a standardized paper form, every patient with an influenza-
like illness. For every patient, age group (<5, 5-14, 15-64, 
65-84, >84), hospitalization, antiviral treatment (as of week 
35), delivery of absence from work certificate, and seasonal 
and pandemic vaccination status (as of week 42) are also 
recorded [12].

In this project, the dynamic model is fitted to ILI incidence 
data from week 40 of year 2003 to week 35 of year 2009. 
It is assumed that the ILI incidence is representative of the 
true influenza incidence, and that there is no time or age 
bias. Belgian demographic data for year 2009 obtained 
from Eurostat [13] are used to determine the initial age-
specific population distribution and to estimate an age-
specific annual mortality rates.

Dynamic transmission model
Mathematical models provide important practical insights 
into the epidemiology of infectious diseases, and concepts 
derived from such models are widely used in the design of 
infection control programmes. The basic idea in infectious 
disease modeling is that the population is divided into 
disjoint groups, according to a few key characteristics which 
are relevant to the disease under consideration. Then the 
progress of an epidemic is modelled by keeping track of 
the number of individuals within each subgroup, which 
are called compartments. In a dynamic model there are 
transition processes between the compartments that specify 
the rate at which individuals move from one compartment to 
the other. The models are typically formulated as systems 
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of differential equations.

The dynamic model structure: In order to model the 
progress of an epidemic in the population, the population 
diversity must be classified into a few key characteristics 
which are relevant to the infection under consideration. In 
this project, the model of Vynnycky et al. [1] is adopted. The 
model is an age stratified SEIRS model with vaccination. 
The population is classified into compartments Sa (t) = 
number of susceptible individuals aged a years at time t, Ea 
(t) = number of exposed individuals aged a years at time t, 
Ia (t) = number of infectious individuals aged a years at time 
t, Ra (t) = number of recovered individuals aged a years at 
time t, and Va (t) = number of vaccinated individuals aged a 
years at time t. In this case, the infection has a significant 
latent period during which the individual who has been 
infected is not yet infectious to others. During this period 
the individual is in compartment E (for exposed). Both the 
recovered and vaccinated individuals are assumed fully 
protected after infection and vaccination, respectively, until 
their immunity wanes [14].

We define age groups, a, of length 1 year such that we 
have individuals who are aged <1, 1 - <2, 2 - <3, . . . , 99 
- <100. The population size and the age-specific mortality 
rates were assumed to be constant to avoid complications 
associated with modeling population growth. The model 
is dynamic in that the number of individuals in each 
compartment may fluctuate over time. Figure 1 presents the 
age-stratified SEIRS model with vaccination. The dynamic 
model states are defined in Table A.1 and the system of 

ordinary differential equations that characterize the model 
is given in (A.1) in the appendices. The model parameters 
are defined in Table 1.

A Realistic Age-Structured (RAS) model was assumed 
in which all individuals move to the next age group on 
August 31 of each year [14]. Individuals are born into 
the first stratum on August 31 of each year. Though this 
approach for introducing newborns into the population may 
be less “natural” than allowing newborns to enter the first 
age stratum continuously, it facilitates tracking the exact 
time when individuals reach the earliest age at vaccination 
(6 months of age) [1]. To ensure that the population size 
remains constant, the individuals in the last age group are 
removed from the population and as many births as deaths 
in the preceeding year are introduced into the population. 
Similarly, vaccination of a proportion of individuals in any 
age group is assumed to be completed on time tvacc of each 
year. The influenza vaccination is given to the individuals 
irrespective of their vaccination or disease history. The 
transmission of influenza is ensured to continue each year 
by seeding a fraction of the susceptible in each of the age 
groups as newly infectious individuals at time tseed. The two 
rates at which individuals lose their immunity, wi and wv, are 
assumed to be equal and age-independent. In the model 
representation, the single arrows indicate time continuous 
transitions while double arrows indicate instantaneous 
transitions on August 31 of each year. The arrows indicating 
influx compartments for vaccination and seeding are 
suppressed from the display.

Table 1: Definition of the model parameters.

Parameter Definition

( )
a

tλ The force of infection for individuals of age a at any time t during a year.

0R The average basic reproduction number measured at reference time t0.

δ Amplitude of the sinusoidal seasonality function z(t)

t0 Reference time for the seasonality function z(t), at which the basic reproduction number equals 0R

ma Yearly mortality rates of individuals of age a

f The daily progression rate from exposed (latent) to infectious, (1/aver-age latent period).

r Daily rate at which infectious individuals recover and become immune, (1/average infectious period)

tvacc Time of vaccination each year

tseed Time of the year at which newly infectious individuals are introduced as a seed into the population.

wv Yearly rate at which vaccinated individuals lose their immunity (1/average duration of protection)

wi Yearly rate at which naturally infected individuals lose their immunity, (1/average duration of immunity)

http://medcraveonline.com/ebooks/Likelihood-Based-Estimation-of-Dynamic-Transmission-Model-Parameters-for-Seasonal-Influenza-by-Fitting-to-Age-and-Season-Specific-ILI-Data-Appendices.pdf
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Figure 1: Age-stratified SEIRS model with vaccination.

The force of infection for individuals of age a at any time 
t during a year, is related to the seasonally forced age-
specific transmission rates by:

' '
  ( ) ( ) ( ),, 'a a a a a

t Z t I tλ β= Σ ………… (2.1)

02 ( )  1    * sinZ ( .
365

) t tt πδ − 
= +  

 

Here, 
, 'a a

β denotes the average daily per capita rate at 
which an individual of age 'a  makes effective contact with a 
person of age a while Z (t) reflects the relative change of the 
basic reproduction number at time t, R0(t), from the average 
basic reproduction number, R0, measured at reference time 
t0. The seasonal peak of transmission occurs three months 
after the reference time t0. The amplitude of the seasonality 
function Z(t) is bounded 0 < δ  < 1 to ensure that Z(t) > 0, 8
∀  t. It determines the peak value of the basic reproduction 
number. The basic reproduction number at time t, R0(t) = 
R0 Z(t).

The average basic reproduction number can be defined as 
the average number of new infections caused by a single 
infected individual when introduced into a wholly susceptible 
population at reference time t0 over the course of the 
infection of this individual. In an age-stratified population the 
basic reproduction number depends on the duration of the 
infectious period, the probability that a contact between an 
infected and a susceptible individual leads to an infection, 
the contact rate, and the constant age distribution of the 
population. It is calculated as the dominant eigenvalue 
of the next generation matrix with elements (a,a')aN

r
β  

In general, the basic reproduction number quantifies the 
transmission potential of the disease such that, if it falls 
below one (R0 < 1) the infection eventually dies out. If R0 > 1 
there is an epidemic in the population, whereas in the case 
where R0 = 1, the disease becomes endemic, meaning the 
disease remains in the population at a consistent rate since 
one infected individual transmits the disease to only one 

susceptible on average.

Social contacts: Modelling the spread of infectious 
diseases requires assumptions to be made regarding the 
underlying transmission process. Influenza is transmitted 
mainly through social interactions of which the frequency 
and intensity typically depend on age. To this purpose, daily 
rates of close contacts >15 minutes by 1-year age intervals 
(starting from age 0), estimated by Goeyvaerts et al. [14] 
from the Belgian POLYMOD contact survey conducted in 
2006, were used in this project.

The age-specific transmission rates ( , 'a a
β ) are assumed to 

be directly proportional to the age-specific rates of making 
social contact. This concept is known as the social contact 
hypothesis introduced by Wallinga et al. [15]:

  . ( , ')( , ') q ca aa aβ = …… (2.2)

Where q is a constant proportionality factor which measures 
the disease-specific infectivity.

Vaccination: As noted earlier in the introduction, vaccination 
is generally considered to be an effective tool to protect 
against influenza disease and its complications. Although 
two different types of influenza vaccine are available: the 
trivalent inactivated influenza vaccine (TIV) and the trivalent 
live-attenuated influenza vaccine (LAIV), it is not until 2011 
that LAIV became authorized in the European Union. Thus 
it was not on the Belgian market during the study period 
considered in this project. Therefore, all references on 
vaccination in this project are based only on TIV. 

Our model assumed an all-or-none effect of vaccine. With 
an all-or-none effect of vaccine, the vaccine efficacy V E 
means that the vaccine is 100% efficacious in fraction V 
E of individuals who are vaccinated and has no effect on 
the remaining fraction (1-V E). The effective vaccination 
coverage is thus the product of the vaccine efficacy and 
vaccine coverage and determines the proportion of 
individuals that move to the vaccinated state each year. 
Goeyvaerts et al. [14] obtained literature-based estimates 
of the TIV vaccine efficacy for influenza-confirmed ILI from 
randomized controlled trials and observational studies as 
proxies for V E. The estimates classified by age and type 
of season are summarized in Table A.2 in the appendices. 
The type of season is then classified by influenza intensity 
and the degree of matching between the vaccine and 
the circulating viral strain. The following age-stratified 
vaccination coverage estimates obtained from the Belgian 
Health Interview Survey of 2008 conducted by the Scientific 
Institute of Public Health were used: 0:066% for 6 months 
- 17 years (arising from a 1% coverage in children with co-
morbidities), 11% for 18-49 years, 28% for 50-64 years, 
50% for 65-74 years, and 71% for > 75 years [10,14,5].

Estimation of the dynamic model parameters
To estimate the values of the unknown parameters that are 
applied in the SEIR model, different approaches outlined 
below were used.

http://medcraveonline.com/ebooks/Likelihood-Based-Estimation-of-Dynamic-Transmission-Model-Parameters-for-Seasonal-Influenza-by-Fitting-to-Age-and-Season-Specific-ILI-Data-Appendices.pdf
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Weighted least squares approach: The Weighted 
Least Squares (WLS) technique involves least squares 
fitting, where the values of the model parameters which 
minimize the weighted squared differences between model 
predictions and the observed ILI incidence data are sought. 

We assume that the epidemiological system is exactly 
described by a dynamic model together with some set 
of parameters, but the observed data arises from some 
deviation of the output of this system by observational 
errors. The parameter set is written as the p-element vector 
θ . Ca (wi) denote the number of reported ILI cases of age 
a in calendar week i and Pa(wi) denote the corresponding 

denominator, i.e. the number of individuals of age a covered 
by the sentinel network in calendar week i. The observed 
age-specific ILI incidence rate in calendar week i can then 
expressed as: Ya (wi) = Ca (wi)=Pa(wi). Thus, we can assume 
that the statistical model can be written as:

  ( ; )  
ii i

M t EY θ= +

Where Mi is the dynamic model for the incidence evaluated 
at the true parameter value,θ and the Ei depict the errors. 
Letting 

*

aI (t) denote the number of newly infectious 
individuals of age a at time t, and Na (t) denote the total 
number of individuals of age a at time t as predicted by 
the model, the model-based age-specific incidence rate in 
calendar week i is given as: 

*

1

7

( )
 ( )  

( )

a
t

a
wi

a
t wi

I t
wi

N t
Z ε

ε

∑

=
∑

………….. (2.4)

For known values of the weights, estimation of the model 
parameters proceeds by minimizing the weighted sum of 
squared differences between the observed ILI incidence 
rate and the scaled model-based incidence rate in (2.5).

( )i

4
2

1
  (w ) ( ) ( iaj i aja j

j i
v Y w Z wα

=

−∑ ∑ …………….. (2.5)

The weights, Vaj (wi), are taken to be proportional to the 
corresponding denominator Paj (wi). They account for the 
unequal population sizes represented by the different age 
groups. The scale factor α which calibrates the model-
based incidence rate to the observed ILI incidence rate 
may absorb several effects such as the probability for an 
infected individual to show symptoms, the GPs consultation 
rate and ILI cases reporting rate. The weighted sum is taken 
over all weekly ILI observations, from week 40 in 2003 to 
week 35 in 2009, per age group aj : 0-4, 5-14, 15-64 and > 
65 years.

Maximum likelihood approach: In statistics, each 
population is identified by a corresponding probability 
distribution. Associated with each probability distribution is 

a unique set of the model’s parameters. As the parameters 
change in value, different probability distributions are 
generated. Thus a model is defined as the family of 
probability distributions indexed by the models parameters. 
The likelihood is the probability of observing the data 
given the model and parameter values for the model. The 
basic idea of maximum likelihood estimation is to find the 
parameter set that maximizes the likelihood of observing 
your data.

Maximum  likelihood  estimation: 

Let 
1

i i
1

2
 )  II n  f (y |    ( | ) f(y , y |,...

i
f y yn

θ θ θ
=

==
 
denote the 

probability density function (pdf) that specifies the probability 
of observing data vector y given a vector of parameters θ. 
The individual observations, yi’s, are assumed independent 
of one another. The likelihood function is defined as L(θ|y) 
= f (y|θ) and represents the likelihood of the parameters θ 
given the observed data y and as such is a function of θ. A 
maximum likelihood estimator (MLE) of the parameter set θ 
based on the observed data y is a parameter vector at which 
L(θ|y) attains its maximum as a function of θ, with y being 
held fixed. In maximum likelihood estimation we seek the 
value of the parameter vector that maximizes the likelihood 
function L(θ|y). The resulting parameter vector, which 
is sought by searching the multidimensional parameter 
space, is called the MLE, and is denoted by θˆ = θˆ1 , θˆ2 , . 
. . , θˆk . For computational convenience, the MLE estimate 
is obtained by maximizing the log likelihood function, in 
(L(θ|y)) ≡ l(θ|y). This is because the two functions, l(θ|y) and 
L(θ|y) are monotonically related to each other so the same 
MLE estimate is obtained by maximizing either of the two.

Application to the data: The observational model is given 
by 

 Ca (wi ) ∼ Binomial (n , α)……. (2.6)

 Where 
*( )

* ( )
( )

a i
ia i

P w
n I a w

N w
= and α scale factor

Since n is large, this distribution can be approximated by 
a Poisson distribution. Because of over dispersion of the 
data, this can further be generalized to an over dispersed 
Poisson or a Negative Binomial distribution. In this project, 
the Negative Binomial distribution was considered which is 
given as:

21   ( ) ,  ( )    ( )) ( ia i a aia iC Binomiw Neg al w w w
k

ative µ µ µ 
+ 

 


…… (2.7)

where: µa (wi ) = E(Ca (wi )) = Pa (wi ) × E(Ya (wi )) = Pa (wi ) 
× αZa (wi ) and 1 > 0

denotes the over dispersion parameter 
1

0
k
=  there is 

no over dispersion and the Negative Binomial distribution 
simplifies to a Poisson distribution. In terms of the standard 
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parameterization of the Negative Binomial distribution using 
the parameters r, number of events until the experiment is 
stopped, and p, probability of success in each trial, where 

r = k and p = 1/ 11 ( )a iw
k
µ 

+ 
 

 the distribution (2.7) can be 
written as: 

i

1       ,     11  ( )
(w )

a
ia

C Negative Binomial r k p
w

k
µ

 
 
 = =
 + 
 



 

….. (2.8)

Considering the value of the parameters r and p, and given 
the vector of observed data, y, the log-likelihood function is 
the same function as the logarithm of the probability density 
(2.9).

( , | )  ( , | ( ))a i
a i

l r pl Cr p wy Σ Σ

( ) ( )   ( )   ln ( )    ( ) ln (1 ) ln ( ln ( )a i a
a

i
i

C w r p C wr p r= ∑ ∑ + + + − − ΓΓ

( )  (l )  n (  1 a iC wΓ +− …….. (2.9)

The general mathematical technique for solving for MLEs 
involves differentiating the log likelihood function with respect 
to the parameter vector, set the resulting gradient vector 
to zero and then solve the system of equations. But this 
method only works if there is an analytical solution. Another 
possibility is the grid search method which involves finding 
the maximum of the log-likelihood function by repeated 
approximation and iteration. However, this method is also 
not practical in most cases and becomes much more difficult 
when the number of parameters increases beyond one or 
two. As a result, most statistical packages employ some 
kind of numerical maximization method. In this method one 
essentially feeds the computer with a set of starting values 
and let algorithms such as Newton-Raphson, Nelder-Mead, 

quasi-Newton and conjugate- gradient find the maximum.

Results
Exploratory results 
Figure 2a displays the contact rate matrix estimated by 
Goeyvaerts et al. [14] from the Belgian POLYMOD contact 
survey conducted in 2006 (technical details on the estimation 
are provided in Goeyvaerts et al. [14]. From the plot, high 
rates are observed on the diagonal indicating that people 
mostly mix with people of the same age class, particularly 
among the children and young adults (assortative mixing). 
In addition, an off-diagonal parent-child component is 
observed, though of weaker magnitude than the assortative 
structure.

The population size and mortality rates data for Belgium in 
2009 obtained from Eurostat was stratified by age. Data for 
up to age 99 years were used for analysis in this report. This 
is motivated by the fact that, individuals aged 99 years and 
above are assumed to be removed from our population. The 
total Belgian population size from age 0 to 99 years was 
10,751,601. The mortality rates estimated from Eurostat 
demographical data are shown in Figure 2b.

Figure 2 presents plots of the weekly observed ILI incidence 
rates stratified by age groups in Belgium. The data available 
was for the seasons from week 40 of year 2003 to week 
35 of year 2009. Most of the data represented the weeks 
when an influenza epidemic can be expected (week 40 up 
to week 20 of the following year). The plots show similar 
trends in all the age groups for each influenza season but 
ILI incidence rates are higher for the age group 0 − 14 years 
than the other age groups. The incidence rates for the last 
age group (≥ 65) are the lowest compared to the other age 
groups. 2003-2004 on average had the highest observed 
ILI incidence rates while 2007-2008 had the lowest rates. 
Similar observations are made for the total population as 
shown in Figure A.1 in the appendices.

    
		  (a) Daily close contact rates of >15 minutes           (b) Age-specific yearly mortality rates

Figure 2: Daily rates of close contacts >15 minutes as estimated by Goeyvaerts et al. (2010) and yearly mortality rates by age estimated 
from Eurostat data.

http://medcraveonline.com/ebooks/Likelihood-Based-Estimation-of-Dynamic-Transmission-Model-Parameters-for-Seasonal-Influenza-by-Fitting-to-Age-and-Season-Specific-ILI-Data-Appendices.pdf
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Dynamic model parameters estimation
The main parameters driving goodness-of-fit to the ILI 
incidence data as identified by Goeyvaert et al. [14] include: 
the average basic reproduction number (R0), the amplitude 
(δ), the immunity waning rates (wi, wv), and the scale 
factor (α). Also, some of the less influential parameters 
include: time point of vaccination (tvacc ), time point at which 
infectious individuals are seeded into the population (tseed ), 
rate at which the exposed individuals become infectious (f 
), and recovery rate (r). 

It was assumed that vaccination took place the same time 
as the spontaneous transition on August 31 each year. To 
ensure that transmission of influenza continued each year, 
200 infectious individuals were seeded in each age class 
of 5-50 years at time point tseed. Individuals outside this age 
group were not included in the seed. Vynnycky et al. [1] 
argued that in previous influenza pandemics, very few of 
the earliest cases occurred in this age range and that older 
individuals (arbitrarily taken to be those aged >50 years) 
are unlikely to be the first cases during a typical influenza 
season, given some immunity to circulating strains resulting 
from exposure to related strains.

Some parameter values such as the average duration of 
the latent period and the average duration of the infectious 
period could be assumed with reasonable confidence from 
empirical studies. Glasser et al. [16] suggested an average 
latent period of 1 day and an average infectious period of 
3.8 days. Similarly, Cauchemez et al. [17] estimated the 
mean duration of infectiousness to be 3.8 days with a 95% 
credible interval of [2,8,17,18]. 

However, there is still considerable uncertainty over the 
most appropriate values for some parameters in our model: 
the average basic reproduction number, the amplitude 
of seasonal forcing, the average duration of effective 
immunity, and the scale factor. Therefore, solutions to the 
SEIRS model in Figure 1 were used to estimate values for 
these parameters so that the resulting dynamics exhibit 
the characteristics of seasonal influenza. Some of which 
being: the amplitude of seasonal forcing to be sufficiently 
strong that there is a genuine off-season with very little 
transmission, and that the amplitude of seasonal forcing 
is weak enough that the system settles down into regular 
annual cycles: if seasonal forcing is too strong, there are 
frequent years with no infections [19].

Because the timing of the epidemic peak differs substantially 
between seasons, the reference and seeding time points 
t0 and tseed, were retained as season-specific parameters. 
The parameters related to the characteristics of seasonal 
influenza, including the amplitude of seasonal forcing and 
the immunity waning rates were assumed constant over the 
seasons. The scale factor (α) was also assumed constant 
over the course of the sea- son (not allowed to change 
during an epidemic season), by age and across the various 
seasons.

Weighted least squares estimation: The model was 
pre-run over a burn-in period of five influenza seasons to 
generate back-ground immunity due to historical infection 
or vaccination. A season-based year of 364 days per 
year which is equivalent to 52 seven-day weeks was 
implemented with t = 0 being on September 1. The dynamic 
model was simulated using a set of starting values (initial 
parameter guesses) and R function optim was used in 
the optimization using SANN optimization method with 
iteration count as 10,000. SANN method performs an 
optimization using a stochastic optimization algorithm 
known as simulated annealing which is an adaptation of the 
Metropolis-Hastings algorithm (a Monte Carlo method) [13]. 
This algorithm can overcome the problem of local maxima, 
although the algorithm may not be a feasible option as it 
may take unrealistically long time to find the solution.

The Nelder-Mead algorithm was then run until convergence 
using the estimates from the SANN method as starting 
values. The Nelder-Mead method work reasonably well for 
non-differentiable functions but though it is relatively slow, 
convergence is attained relatively faster as compared to the 
SANN method. The weighted least squares function used 
enabled estimation by finding parameter values minimizing 
the weighted sum of squared differences between the 
observed ILI incidence rate and the scaled model-based 
incidence rate given in (2.5). Table 2 shows the parameter 
estimates obtained. The dynamic model was then re-
simulated using the parameter estimates and Figure 3 
shows the fit of the dynamic model to the age-stratified ILI 
incidence data.

Maximum likelihood estimation: As was the case in the 
weighted least squares approach, a function for simulating 
the dynamic model was used. In addition, a function to 
return the log-likelihood of the data, (2.9), given some 
combination of parameters was also used. The optimization 
procedure used in the weighted least squares estimation 
was followed. In this scenario, maximizing the likelihood 
function determines the parameters that are most likely 
to produce the observed data. The parameter estimates 
obtained are given in Table 2, Figure 4 shows the fit of 
the dynamic model to the age-stratified ILI incidence data 
after re-simulating the dynamic model using the parameter 
estimates obtained.

Based on the model under consideration, and conditionally 
on the values of the other parameters obtained, it takes 
approximately 2.27 years for naturally infected and 
vaccinated individuals to lose immunity and become 
susceptible again. As mentioned earlier in this report, the 
scaling factor may absorb several effects such as ILI cases 
reporting rate, the probability for an infected individual 
to show symptoms, the GP consultation rate and also it 
might also absorb incorrect modelling assumptions. The 

0R  is estimated to be highest in 2003-2004 and lowest in 
2005-2006, which very well corresponds with the seasonal 
classification of influenza intensity in Table A.2. The peak 
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value of the basic reproduction number, determined by δ is 
estimated to be approximately 1.21 or 1.20 times the average 
basic reproduction number using the maximum likelihood 
and weighted least squares approaches respectively. The 
reference time is estimated to be in September - October for 
the different seasons, which means that the seasonal peak 
of transmission would occur in December-January since the 
seasonal peak of transmission occurs three months after 

the reference time. The estimated seeding time is mainly 
September-October for the different seasons.

From Figure 3 and Figure 4 it is clear that the dynamic model 
tend to very well approximate the incidence rates for the 
total population. Similarly, the incidence rates for the age 
group of 15-64 years are also very well approximated by the 
model. On the other hand, the model tend to underestimate 
the total incidence for individuals aged 0-14 years.

Table 2: Weighted Least Squares estimates for the dynamic transmission model parameters.

Season
      δ wv= wi

        α             t0           tseed          q        0R

2003-2004 0.201 0.440 0.212 Oct 05  Sept 21 0.170 5.002

2004-2005 ‘’ ‘’ ‘’ Sept 17 Sept 14 0.120 3.530

2005-2006 ‘’ ‘’ ‘’ Sept 01 Oct 11 0.101 2.942

2006-2007 ‘’ ‘’ ‘’ Sept 30 Sept 02 0.140 4.119

2007-2008 ‘’ ‘’ ‘’ Sept 07 Nov 15 0.110 3.236

2008 -2009 ‘’ ‘’ ‘’ Oct 26 Sept 04 0.160 4.707

	 (a) Incidence rates for age group 0- 4 years		   (b) Incidence rates for age group 5-14 years

	 (c) Incidence rates for age group 15- 64 years		     (d) Incidence rates for age group ≥65 years

Figure 3: Observed ILI incidence rates stratified by age groups in Belgium 2003-2009.
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(a)	 Incidence rates for the total population.

(b)	 Incidence rates for age group 0-4 years

(c)	 Incidence rates for age group 5-14 years

(d)	 Incidence rates for age group 15-64 years

(e)	 Incidence rates for age group _65 years

Figure 4: Observed ILI incidence rates and the corresponding model-based estimates (using WLS parameter estimates) in Belgium 
2003-2009.
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Table 3: Maximum likelihood estimates for the dynamic transmission model parameters.

Season δ wv= wi α t0 tseed q 0R

2003-2004 0.201 0.439 0.230 Oct 05  Sept 24 0.168 4.943

2004-2005 ‘’ ‘’ ‘’ Sept 13 Sept 27 0.116 3.413

2005-2006 ‘’ ‘’ ‘’ Sept 02 Oct 29 0.100 2.942

2006-2007 ‘’ ‘’ ‘’ Oct 05 Sept 03 0.140 4.119

2007-2008 ‘’ ‘’ ‘’ Sept 11 Dec 05 0.110 3.236

2008 -2009 ‘’ ‘’ ‘’ Oct 26 Sept 05 0.161 4.737

Discussion and Conclusion
Since influenza is transmitted mainly through social 
interactions of which the frequency and intensity typically 
depend on age, the daily rates of close contacts >15 
minutes by 1-year age intervals estimated by Goeyvaerts 
et al. (2010) from the Belgian POLYMOD contact survey 
were used. These estimates depicted an assortative 
mixing especially among the children and young adults. 
In addition, an off-diagonal parent-child component was 
observed, though of weaker magnitude than the assortative 
structure. Belgian demographic data on population size and 
mortality rates for year 2009 obtained from Eurostat were 
also used to determine the initial age-specific population 
distribution and to estimate age-specific annual mortality 
rates. The total Belgian population size from age 0 to 99 
years was 10,751,601. Data on the weekly observed ILI 
incidence rates stratified by age groups showed that ILI 
incidence rates are highest for the age group 0-14 years 
and lowest for age group ≥ 65 years. In addition, 2003 - 
2004 on average had the

Highest observed ILI incidence rates while 2007 - 2008 had 
the lowest rates.

To estimate the values of the unknown parameters of the 
dynamic model, Weighted Least Squares and Maximum 
Likelihood estimation methods were applied. In the 
Weighted Least Squares method, we assumed that the 
epidemiological system is exactly described by a dynamic 
model together with some set of parameters but the 
observed data arises from some deviation of the output of 
this system by observational errors. Then the values of the 
model parameters which minimizes the weighted squared 
errors (differences between the model predictions and the 
observed ILI incidence data) were sought, with the weights 
taken to be proportional to the corresponding denominator 
in each age group to account for the unequal population 
sizes represented by the different age groups. In the 
Maximum Likelihood estimation methods, it was assumed 
that the observations are Negative binomial distributed. This 
seemed appropriate since though it is natural to approximate 
a Binomial distribution by a Poisson distribution, the Poisson 
distribution can further be generalized to a Negative 

Binomial distribution for over dispersed data. Maximizing 
the likelihood function determines the parameters that are 
most likely to produce the observed data.

Depending upon the choice of the initial parameter values, 
the Nelder-Mead algorithm could prematurely stop and 
return a sub-optimal set of parameter values. Thus the 
dynamic model was first simulated using a set of starting 
values and SANN optimization method. This method is 
advantageous since it can overcome the problem of local 
maxima. In contrast, the algorithm may not be a feasible 
option as it may take unrealistically long time to find the 
solution. Thus the iteration count for the algorithm was set 
to 10,000. The Nelder-Mead algorithm was then run until 
convergence using estimates obtained using the SANN 
method as starting values. This optimization procedure was 
employed in both estimation approaches.

The parameter estimates obtained using the two different 
approaches did not differ much. Indeed, the values 
obtained for the amplitude, immunity waning rates and the 
proportionality factor were approximately the same. Though 
some differences were observed in the parameter estimates 
for the scaling factor, reference time and the seeding time, 
the differences were not so much pronounced. Thus the 
choice between the two methods of estimation can have 
non-trivial consequences.
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