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Abstract
Solonnikov1 introduced a new system of the linear equations to treat the nonlinear problem obtained by the so called 
Hanzawa coordinate transformation to the free boundry problem for the Navier-Stokes equations in order to write it in a 
fixed domain. And, he proved the maximal regularity theorem in the L2 Sobolev-Slobodetskii space in a bounded domain. In 
this paper, we prove the maximal p qL L− regularity for the same linear problem as in Solonnikov1 in uniformly C3 domains 
under the assumption that the weak Dirichlet problem is uniquely solvable. Our approach is to constructR  bounded 
solution operator for the generalized resolvent problem obtained by the Laplace transform with respet to time variable and 
to apply the Weis operator valued Fourier multiplier theorem.2 The procedure in constructing the solution operator is similar 
to the theory of parameter elliptic problem.3 There are two differences: one is to use the ℜ  norm instead of the usual norm 
and another is to handle with the pressure term. Since the pressure term gives a non-local situation, in the localization the 
usual cut-off technique can not be used. To overcome this difficulty arising from the pressure term, we use the Grubb and 
Solonnikov technique4,5 to eliminate the pressure term.

Keywords: maximal p qL L−  regularity, R  bounded solution operator, uniform C3 domain, finite coverning space, the 
weak dirichlet problem
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Introduction
Let Ω  be a uniformly 3C  domain with boundary Γ  in the N  dimensional Euclidean space N

  ( 2),N ≥  and let n  be the 
unit outer normal to Γ . This paper deals with the linear problem:

   =0 0 0

D ( ( ) ) = , d = = d in (0,T),
= on (0,T),

( ( ) (( ) ) ) = on (0,T),
( , ) | = ( , ) on .

t

t

t

v iv D v I ivv G iv
A v n vP D

D v I n
v v

σ

µ
ρ ρ
µ δ ρ
ρ ρ

Γ

Γ

∂ − − Ω×
∂ + ⋅∇ − ⋅ + Γ×
 − − + ∆ Γ×
 Ω×Γ

F G

I H
F

B

p

p
  (1.1)

The unknowns are the vector field 1= ( , , )Nv v v Τ
 , where M Τ  denotes the transposed M , and the scalar functions ( , )x tp  

and ( , )x tρ , while , , ,F G G D and H  are prescribed functions, and 0v  and 0ρ  are prescribed initial data. ( )D v  is the doubled 

rate-of-strain tensor whose t( , ) hi j  components are ( ) = j i
ij

i j

v vD v
x x

∂ ∂
+

∂ ∂
 ; I  the N N×  identity matrix; F  a bounded linear 

operator from 2 ( )qH Ω  into 1 ( )qH Ω ; B  a bounded linear operator from 2 1/ ( )q
qW − Γ  into 1 1/ ( )q

qW − Γ ; Γ∆  the Laplace-Beltrami 
operator on Γ ; = ( )n nΓ∇ ∇ − ⋅∇  the tangential gradient on Γ . Moreover, = ( )xµ µ  and = ( )xδ δ  are given 1C  functions 
defined on Ω , and ( )A xσ  is a vector field defined on Γ  depending on a parameter [0,1)σ ∈ . Finally, for any matrix field 
K  with t( , ) hi j  components ijK , the quantity DivK  denotes an N -vector with components =1

N
j ijj K∂∑ , and also for any 

vector of functions 1= ( , , )Nw w w Τ
 , we set =1d = N

j jjivw w∂∑ . Throughout the paper, we assume that

   

0 1 1

2 1/2 1 1 1/1 1( ) ( ) ( )( )

( ), ( ) , | ( ( ), ( )) | for all x ,

( ) , qqH H WWq q qq

m x x m x x m

v m v mρ

µ δ µ δ

ρ −−Ω Ω ΓΓ

≤ ≤ ∇ ≤ ∈Ω

≤ ≤F B
   (1.2)

for some positive constants 0m  and 1m . Moreover, we assume that 0 = 0A  and that for any (0,1)σ ∈ , Aσ  satisfies the 
assumptions:

  
2 1/2 2 3( )| ( ) | ,| ( ) ( ) | | | for any x,y ,a b

rWr
A x m A x A y m x y A mσ σ σ σ σ −

− Γ
≤ − ≤ − ∈Γ ≤   (1.3)

for some positive constants 2m , 3m , a  and b  that are independent of (0,1)σ ∈ , where r  is an exponent with < <N r ∞ . 
Notice that for = 0σ , the third equation in (1.1), the kinematic equation, reads

= on (0,T).t v n v Dρ∂ − ⋅ + Γ×F

Let 1 1= ( , , )Np p p −  be local coordinates on a surface ′Γ ⊂ Γ  so that ′Γ  is represented by the equation = ( )x r p . Let

= ,ij
i j

r rg
p p
∂ ∂

⋅
∂ ∂

and let G  be an N N×  matrix with t( , ) hi j  component ijg , which is called the first fundamental form of Γ  Let 

ijg  be the t( , ) hi j  element of the inverse matrix 1G−  of G  and let = detg G . Then, the Laplace Beltrami operator Γ∆  on 
Γ  is defined by

            

1

, =1

1= ( ( ( ))).
N

ij

i j i j
f g g f r p

p pg

−

Γ
∂ ∂

∆
∂ ∂∑

Moreover, Aσ Γ⋅∇  is represented on ′Γ  by

                  
1

=1
= ( ( ))

N

i
i i

A f A f r p
pσ σ

−

Γ
∂

⋅∇
∂∑

with some 1N −  vector ,1 , 1( , , )NA Aσ σ − . We may assume that ,1 , 1= ( , , )NA A Aσ σ σ −  is defined globally on Γ .

Problem (1.1) arises in the linearization of the time-dependent problem with a free boundary describing the evolution of 
viscous incompressible capillary fluid with a coefficient of surface tension δ . In fact, this problem is formulated as follows:

   =0 0

( ) = 0, d = 0 , (0, ),
( ( ) ) = , = , (0, ),

| = , ( ,0) = ( ) .

t t

t t n t t

t t

v v v v p ivv x t T
D v pI n Hn V v n x t T

v x v x x

µ
µ δ
+ ⋅∇ − ∆ +∇ ∈Ω ∈

 − ⋅ ∈Γ ∈
Ω Ω ∈Ω

 (1.4)

Where, tΩ  is the evolution of the reference domain Ω  at time > 0t , tΓ  the boundary of tΩ , and tn  the unit outer normal 
to tΓ . Moreover, nV  is the velocity of the evolution of the free surface tΓ  in the tn  direction and H  is the 1N −  times mean 
curvature of tΓ . The equation =n tV v n⋅  is the non-slip condition on the free surface. Since tΩ  is unknown, the so-called 
Hanzawa coordinate tranfromation is applied to write Eq. (1.4) in a fixed domain Ω . Namely, introducing the unknown 
function ρ , we represent tΓ  as

      = { = ( , ) | } ( > 0).t x y y t n y tρΓ + ∈Γ
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In this case, the kinetic condition =n tV v n⋅  reads

    2< | > (| | | |) = 0 on (0,T)t v n v O vρ ρ ρΓ Γ′ ′+ ∇ − ⋅ + ∇ Γ×

Where, < | >⋅ ⋅  is the inner product on the tangent space of Γ  and 2(| | | |)O vρΓ′∇  denotes the nonlinear part of order 3. If 
we move the nonlinear term < | >v ρΓ′∇  to the right side and use the fixed point argument, then we can show the local well-
posedness only in the small velocity case. To handle with the large velocity case, Solonnikov1 introduced an approximation 
vσ  of initial data 0v , and then writing < | >=< | > < | >v v v vσ σρ ρ ρΓ Γ Γ′ ′ ′∇ ∇ + − ∇  we have the linearization principle for the 
kinetic equation as follows:

    < | > = ( , ). on (0,T)t v n v d vσ γρ ρ ρ′+ ∇ − ⋅ Γ×

with 2( , ) =< | > (| | | |)d v v v O vσρ ρ ρΓ Γ′ ′− ∇ + ∇ . Thus, as a linearized problem of Eq. (1.4), we have (1.1), where < | >vσ ρΓ′∇  
is written as Aσ ρΓ⋅∇  for (0,1)σ ∈ .

Problem (1.1) has been studied by Solonnikov1 in anisotropic Sobolev-Slobodetskii spaces , /2
2W    in a cylindrical domain 

= (0, )TQ TΩ×  under the assumption that Ω  is a bounded domain with a smooth boundary Γ . The purpose of this paper 
is to prove the maximal p qL L−  regularity of problem (1.1). Namely, the solutions v  and ρ  obtained in this paper belong 
to the following functional spaces:

    

2 1

3 1 2

((0, ), ( ) ) ((0, ), ( ) ),

((0, ), ( )) ((0, ), ( )).

N N
p q p q

p q p q

v L T H H T L

L T H H T Hρ

∈ Ω ∩ Ω

∈ Ω ∩ Ω
    (1.5)

The maximal qpL L−  theory is a main tool to study the global well-posedness of free boundary problems for the Navier-
Stokes equations in unbounded domains. In fact, in the unbounded domain case, only polynomial decay rates are obtained 
with suitable space norm pointwisely in time, which guarantees only global in time summability with rather large.6,7

As a related topics, the case that = ( , )A A x tσ σ  has been treated by Prüss et al.,8−10 in the maximal pL  regularity class and 
Shimizu et al.,11 in the maximal p qL L−

 
regularity class. Their problem arises in the linearization of the time-dependent 

problem with a sharp interface describing the evolution of two different viscous incompressible capillary fluids. Of course, 
their approach is completely different from that in this paper, because they treated the time dependent coefficient case, 
while the coefficients in this paper is time independent.

We now state some references for free boundary problems for the Navier-Stokes equtions Eq. (1.4). The problem 
has been studied by many mathematicians in the following two cases: Ω  is a bounded domain or a layer defined by 

1{ = ( , , ) | 0 < < }N
N Nx x x R x b∈ . The former is called a drop problem and the latter an ocean problem. When Ω  is a layer, 

the local well-posedness was proved by Beal,12 Allain13 and Tani14 in the 2L  Sobolev-Slobodetski space in the > 0δ  case, 
and by Abels15 in the pL  Sobolev-Slobodetski space in the = 0δ  case. When Ω  is a bounded domain, the local well-
posendess is proved by Solonnikov16,17 in the 2L  Sobolev-Slobodetski space, by Schweizer18 in the semigroup setting, 
by Moglilevski19 and Solonnikov20 in the Hölder spaces in the > 0δ  case, and by Solonnikov21 and Mucha et al.,22 in pL  
Sobolev-Slobodetsk i space and by Shibata et al.,23 in the maximal p qL L−  class in the = 0δ  case. Recently, in the case 
where Ω  is a uniformly 3C  domain and > 0δ , Shibata24 proved the local well-posedness in the maximal p qL L−  class 
under the assumption that the weak Dirichlet problem is uniquely solvable.

When Ω  is a layer, the global well-posedness was proved by Beale12 and Tani25 in the > 0δ  case, and by Sylvester et 
al.,26 in the = 0δ  case. The decay rate was studied by Beale et al.,27  Sylvester28, Hataya29. When Ω  is a bounded domain, 
the global well-posedness was proved by Solonnikov30 in the 2L  Sobolev-Slobodetski i space, by Padula et al.,31 in the 
Hölder spaces, and by Shibata32 in the pL  in time and qL

 
in space setting under the assumption that is Ω  close to ball 

and initial data are small in the > 0δ  case, and by Solonnikov21 in the pL  Sobolev-Slobodetski i space and by Shibata33 in 
the maxima p qL L−  class in the = 0δ  case. 

To prove the local well-posedness for large initial data, in the above references the Lagrange coordinate transformation 
was mostly used to transform the problem to the reference domain. But, if we apply the theory obtained in Shibata34,35 to the 
problem obtained by the Hanzawa coordinate transformation, then we need the smallness assumption on initial velocity. 
To avoid this, it is necessary to use the linear problem introduced by Solonnikov.1

To prove the maximal p qL L− regularity of Eq. (1.1), our main tool is to use R -bounded solution operators of the 
corresponding generalized resolvent problem (1.6) given below and the Weis operator valued Fourier multiplier theorem.2 
Thus, the main part of this paper is devoted to proving the existence of R  bounded solution operators and the uniqueness 
of solutions of problem: 

   

D ( ( ) ) = , d = = d in ,
= on ,

( ( ) (( ) ) ) = on .

u iv q iv g ivg
h A h u d

u h
σ

λ µ
λ
µ δ

Γ

Γ

− − Ω
 + ⋅∇ − ⋅ + Γ
 − − + ∆ Γ

D u I f u
u n

D I I n h
F

Bq

  (1.6)
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with complex parameter λ  varying in , 0ε λΣ . Where, we have set 

     , 00 = { || arg | ,| | }.Cε λ λ λ π ε λ λΣ ∈ ≤ − ≥

To state the assumptions and main results of this paper, at this point we explain some further notation used throughout 
the paper. We denote the set of all complex numbers, real numbers and natural numbers by C , R , and N , respectively. 

We set 0 = {0}N N ∪ . For any multi-index 1 0= ( , , ) N
N Nα α α ∈ , we set =1| |= N

jjα α∑ , and 1
1= N

x N
α αα∂ ∂ ∂  for 1= ( , , )Nx x x  

and = /j jx∂ ∂ ∂ . For scalar, θ , and N -vector, 1= ( , , )Nu u u Τ
 , functions and 0n N∈ , we set = ( || |= )n

x nαθ θ α∇ ∂ , 
= ( || |= , = 1, , )n

x ju u n j Nα α∇ ∂  . In particular, 0 =θ θ∇ , 1 =θ θ∇ ∇ , 0 = ,u u∇  and 1 = .u u∇ ∇  For any domain NG R⊂ , let ( )qL G , 
( )m

qH G , and , ( )s
p qB G  be the standard Lebesgue, Sobolev, and Besov spaces on G , and let 

( )L Gq


, 
( )mH Gq


, and 

( ),
sB Gp q


 

denote their respective norms. In particular, we set 0 ( ) = ( )q qH G L G , ( ) = ( )s s
pp pB G W G , and 

( ) ( )=s sB G W Gpp p
 

. We use bold 

lowercase letters to denote N -vectors and bold capital letters to denote N N×  matrices. For any N  vector a , ia  denotes 

the thi  component of a  and for any N N×  matrix A , ijA  denotes the t( , ) hi j  component of A , and moreover the N N×  

matrix whose t( , ) hi j  component is ijK  is written as ( )ijK . Let ijδ  be the Kronecker delta symbols, that is = 1iiδ  and = 0ijδ  

for =i j/ . = ( )ijI δ  is the N N×  identity matrix. For two N N×  matrices = ( )ijA a  and = ( )ijB b , we write , =1: = N
ij jii jA B a b∑

. For any N -vectors a  and b , let =1=< , >= N
i iia b a b a b⋅ ∑ . For any N  vector a , let = < , >a a a n nτ − . Given two Banach 

spaces X  and Y , = { | , }X Y x y x X y Y+ + ∈ ∈ , ( , )X YL  denotes the set of all bounded linear operators from X  into Y , 

and ( , )X YL  is written simply by ( )XL . dX  denotes the d -product space of X , that is 1= { = ( , , ) | }d
d iX x x x x X∈ , while 

the norm of dX  is simply written as X , that is =1= d
iX Xif f∑ . For any domain U C⊂ , H ( , ( , ))ol U X YL  denotes the 

set of all ( , )X YL -valued holomorphic functions defined on U . Let ( , ) ({ ( ) | })X Y Uλ λ ∈LR T  be theR  bound of an operator 

family ( ) H ( , ( , ))ol U X Yλ ∈T L . Let 1ˆ ( )qH G  be a homogeneous space defined by 1
,l

ˆ ( ) = { ( ) | ( ) }N
q q oc qH G L G L Gθ θ∈ ∇ ∈ . 

Let 1
,0

ˆ ( )qH G  and 1
,0 ( )qH G  be spaces defined by 1 1

,0 ( ) = { ( ) | | = 0}q q GX G X Gθ θ ∂∈  for ˆ{ , }X H H∈ , where G∂  denotes the 

boundary of G . Let ( , ) =G G
u v u vdx⋅∫  and ( , ) =G G

u v u vdσ∂ ∂
⋅∫ , where v  denotes the complex conjugate of v  and dσ  the 

surface element of G∂ . Let

    q ,0
ˆ( ) = { ( ) | ( , ) = 0 forall H (G)}.N

q q GJ G f L G f φ φ ′∈ ∇ ∈  (1.7)

Let 

  , ,= { | R }, = { \ {0} || arg | }, = { || | }.a aC C e a C aε ε ελ λ λ λ π ε λ λ+ ∈ ≥ Σ ∈ ≤ − Σ ∈Σ ≥

For 1 p≤ ≤ ∞ , (( , ), )pL a b X  and (( , ), )m
pH a b X  denote the standard Lebesgue and Sobolev spaces of X -valued functions 

defined on an interval ( , )a b , and 
(( , ), )L a b Xp


 and 

(( , ), )mH a b Xp


 denote their respective norms. For (0,1)θ ∈ , Bessel potential 
spaces ( , )pH Xθ

  are defined by 

   1 2 /2
( , ) ( , )

( , ) = { ( , ) | = [(1 ) [ ]( )] < }.p p H Xp L Xp
H X f L R X f fθ θ

θ τ τ−∈ + ∞




 F F

Here, F  and 1−F  denote the X  valued Fourier transform and its inverse formula on .  C denotes a generic constant 
and , , ,a b cC



 denotes that the constant , , ,a b cC


 depends on a,b,c,…The value of C  and , , ,a b cC


 may change from line to 
line.

We now introduce several definitions. 

Definition 1.1: Let Ω  be a domain in N
  with boundary ∂Ω . We say that Ω  is a uniformly 3C  domain, if there exist 

positive constants , d Kanα β such that for any 0 01 0= ( , , )Nx x x ∈∂Ω  there exist a coordinate number j and a 3C  function 
( )h x′  1 ˆ( = ( , , , , ))j Nx x x x′

   defined on 0( )B xα ′′  with 0 01 0 0ˆ= ( , , , )j Nx x x x′    and 3 ( ( ))0H B xh K
α′ ′∞

≤  such that

   

0 0 0

0 0 0

( ) = { | > ( )( ( ))} ( ),

( ) = { | = ( )( ( ))} ( ).

N
j

N
j

B x x x h x x B x B x

B x x x h x x B x B x
β α β

β α β

′ ′ ′ ′Ω∩ ∈ ∈ ∩

′ ′ ′ ′∂Ω∩ ∈ ∈ ∩





 (1.8)

Here, 1 1 1 1ˆ( , , , , ) = ( , , , , , )j N j j Nx x x x x x x− +    , 1
0 0( ) = { || |< }NB x x x xα α−
′ ′′ ′ ′∈ −  and 0 0( ) = { || |< }.NB x x x xβ β∈ −

Definition 1.2: Let X  and Y  be two Banach spaces. A family of operators ( , )X Y⊂T L  is called R -bounded on 
( , )X YL , if there exist constants > 0C  and [1, )p∈ ∞  such that for each natural number n , =1{ }n

j jT ⊂T , and =1{ }n
j jf X⊂  

there holds the inequality:
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=1 =1((0,1), ) ((0,1), )

( ) ( ) .
n n

j j j j j
j jL Y L Xp p

r u T f C r u f≤∑ ∑  (1.9)

The smallest such C  is called R -bound of T  on ( , )X YL , which is denoted by ( , ) ( )X YLR T . Here the Rademacher 
functions kr , k N∈ , are given by :[0,1] { 1,1}, sign(sin(2 ))k

kr t tπ→ −  .

Remark 1.3 The definition of R -boundedness is independent of [1, )p∈ ∞  (cf. [36, p.26 3.2. Remarks (2)]).36

Definition 1.4: Let 1 < <q ∞ . We say that the weak Dirichlet problem is uniquely solvable on 1
,0

ˆ ( )qH Ω , if the following 
assertion holds: For any ( )N

qf L∈ Ω  there exists a unique 1
,0

ˆ ( )qHθ ∈ Ω  which satisfies the variational equation:

     
1
q ,0

ˆ( , ) = ( , ) for all H ( ),fθ φ φ φ ′Ω Ω∇ ∇ ∇ ∈ Ω  (1.10)

 and the estimate: 
( ) ( )qL Lq q

C fθ
Ω Ω

∇ ≤  for some constant qC  independent of ,f danθ φ , We define a bounded linear 

operator 1
0 ,0

ˆ( ( ) , ( ))N
q qL H∈ Ω ΩK L  by letting 0 ( ) =f θK . 

Remark 1.5: 
(1) Given ( )N

qf L∈ Ω  and 1 1/ ( )q
qg W −∈ Γ , there exists a unique 1 1

,0
ˆ( ) ( )q qu H H∈ Ω + Ω  that satisfies the variational equation:

     
1
q ,0

ˆ( , ) = ( , ) H ( ) fou r anyfφ φ φ ′Ω Ω∇ ∇ ∇ ∈ Ω   (1.11)

subject to =u g  on Γ . In fact, choosing 1( )qW∈ Ωg  in such a way that | = gΓg , we see that 0= ( )u f+ −∇Kg g  is a 
required function. Obviously, 1 1/( ) ( ) ( )( )qqL W Lq qq

u C g f−Ω Γ Ω
∇ ≤ + . We define a linear operator 1K  by 1( , ) =f g uK . In 

particular, 1 1
,0

ˆ( ) ( )q qH HΩ + Ω  is the space for p  in (1.1) and q  in (1.6).

(2) In applications for our theorem stated below, it is important to prove the weak Dirichlet problem is uniquely solvable. For 
example, this holds for bounded domains, exterior domains, half-spaces, bent half-spaces, layer domains, tube domains, 
etc.

Since 1 ( )qH Ω  is usually not dense in 1ˆ ( )qH Ω , it does not hold that d = div ivgu  implies ( , ) = ( , )gϕ ϕΩ Ω∇ ∇u  for all 1ˆ ( )qHϕ ∈ Ω . 
Of course, the opposite direction holds. Thus, finally we introduce the following definition.

Definition 1.6: For u, g ( )N
qL∈ Ω , we say that d = div ivgu  in Ω  if there holds that 1

q ,0
ˆ( , ) = ( , ) for all H .u gϕ ϕ ϕ ′Ω Ω∇ ∇ ∈

To solve the divergence equation d =iv gu  in Ω , it is necessary to assume that g  is given by = dg ivg  for some g , and 
so we define the space ( )qDI G  by 

             1( ) = {( , ) | ( ), ( ), = d inG},q q qDI G g g H G g L G g ivg∈ ∈g

where G  is any domain in N
 .

We now state main results of this paper. We first state the existence theorems. 

Theorem 1.7
Let 1 < <q ∞  and 0 < < / 2ε π . Assume that the following conditions are satisfied:

Ω  is a uniformly 3C  domain; 

µ  and δ  are real valued functions satisfying the assumptions (1.2); 

The weak Dirichlet problem is uniquely solvable on 1
,0

ˆ ( )qH Ω ; 

0 = 0A  and Aσ  is an 1N −  vector of real valued functions with parameter (0,1)σ ∈  satisfying (1.3). 

Set 

   

2 1/ 1

2 1/ 1
1 7 1 3 7 2 4

1
5 6

, 0
, 0

, 0

( ) = {( , , , , ) | ( ) ,( , ) ( ), ( ), ( ) };

( ) = {( , , ) | , , ( ) , ( ), ( ) ,

( ), ( )};

for =0, 1 for =0,
= =

for (0,1), for

N q N
q q q q q

N q N
q q q q

q q

b

X f g d L g DI d W h H

F F F F F L F W F H

F L F H

ε λ
σ λ σ

λ

σ σ
γ

σ σ σ

−

−

−
+

Ω ∈ Ω ∈ Ω ∈ Γ ∈ Ω

Ω ∈ Ω ∈ Γ ∈ Ω

∈ Ω ∈ Ω

ΣΛ  ∈

g h f g





X

(0,1).



∈

 (1.12)
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Then, there exist a constant 0 1λ ≥  and operator families:

  
2 1 1

, , ,00 0
ˆ( ) H ( , ( ( ), ( ) )), ( ) H ( , ( ( ), ( ) ( ))),N

q q q q qol H P ol H Hσ λ γ σ λ γσ σλ λ∈ Λ Ω Ω ∈ Λ Ω Ω + ΩA L X L X

     
3

, 0( ) H ( , ( ( ), ( )))q qol Hσ λ γσλ ∈ Λ Ω ΩH L X

such that for any , 0σ λ γσλ ∈Λ  and ( , , , , ) ( )qf g g d h X∈ Ω , 

   = ( ) ( , , , , ), = ( ) ( , , , , ), = ( ) ( , , , , ),u F g d F f g d h h F f g d hλ λ λλ λ λf g h g gA P Hq

are solutions of (1.6), where

    
1/2 1/2( , , , , ) = ( , , , , , , ),F f g g d h f d h h g g gλ λ λ λ     (1.13)

and 

          

/2
2 , 0( ( ), ( ) )

, 0( ( ), ( ) )

3 , 0( ( ), ( ))

({( ) ( ( )) | }) ,

({( ) ( ) | }) ,

({( ) ( ( )) | }) ,

j
j bNHq q

N bLq q

k
k bHq q

r

r

r

τ σ λ γσ

τ σ λ γσ

τ σ λ γσ

τ λ λ λ

τ λ λ

τ λ λ λ

−Ω Ω

Ω Ω

−Ω Ω

∂ ∈Λ ≤

∂ ∇ ∈Λ ≤

∂ ∈Λ ≤







L X

L X

L X

R A

R P

R H

for = 0,1 , = 0,1,2j  and = 0,1k . Here, br  is a constant depending on 0 1 2 3, , , , , , ,m m m m K Ndq anα β but independent of 
(0,1)σ ∈ . 

Remark 1.8: In this paper, 1 2 3 4 5 6 7, , , , ,F F F F F andF F  are corresponding variables to 1/2 1/2, , , , ,f d h h g dg ganλ λ λ
respectively. The norm of space ( )q ΩX  is given by

   
2 1/ 11 7 1 3 5 7 2 4 6( )( ) ( ) ( )( , , ) = ( , , , ) ( , ) .qWL Wq q qq

F F F F F F F F F− ΓΩ Ω Ω
+ + X

Using Theorem 1.7 and the Weis operator valued Fourier multiplier theorem,2 we have the following theorem.

Theorem 1.9: Let 1 < , <p q ∞ , and > 0T . Assume that 2 / 1 / = 1p q /+  and that the conditions i – iv stated in Theorem 1.7 
are satisfied. Let 2(1 1/ )

0 , ( )p
q pu B −∈ Ω  and 3 1/ 1/

0 , ( )p q
q pWρ − −∈ Γ  be initial data for problem (1.1) and let ,F  ,G  ,G , ,D  and H  be 

functions appearing in the right hand side of problem (1.1) with

   
1 1/2 1((0, ), ( ) )), ( , ( )) ( , ( )), ( , ( ) ),N N

p q p q p q p qF L T L G L H H R L H L∈ Ω ∈ Ω ∩ Ω ∈ ΩG 

    
2 1/ 1 1/2((0, ), ( )), (( , ( ) ) ( , ( ) ).q N N

p q p q p qD L T W L H H L−∈ Γ ∈ Ω ∩ ΩH  

We assume that 0,u  ,G  and H  satisfy the following compatibility conditions:

                  (1.14)

Then, problem (1.1) admits solutions ,v and ρp with 

   

1 2 1 1
,0

1 2 3

ˆ((0, ), ( ) ) ((0, ), ( ) ), ((0, ), ( ) ( )),

((0, ), ( )) ((0, ), ( )),

N N
p q p q p q q

p q p q

v H T L L T H L T H H

H T H L T Hρ

∈ Ω ∩ Ω ∈ Ω + Ω

∈ Ω ∩ Ω

p

possessing the estimate: 

 

    

2 3((0, ), ( )) ((0, ), ( ))((0, ), ( ))

2(1 1/ ) 3 1/ 1/2 0 0((0, ), ( )) ( ) ( ), ,

2 1/ 1((0, ), ( )) ((0, ), ( )) ( , ( ))

1/2

(

( , )

( , )

tL T H L T HL T Lp q p qp q

c T
p p qt L T H B Bp q q p q p

c t
qL T L L T Wp q p q L R Hp q

c t
H p

v v

Ce

D e G

e G

γσ
σ

γσ

γσ

ρ

ρ γ ρ

Ω ΩΩ

− − −Ω Ω Γ

−
−Ω Γ Ω

−

+ ∂ +

+ ∂ ≤ +

+ + +

+

u

F H

H
( , ( )) ( , ( ))

)c t
tR L L R Lq p q

e γσ−

Ω Ω
+ ∂ G

  (1.15)

 

for some positive constants C  and c . Where, C  and c  in (1.15) are independent of (0,1)σ ∈ , and σγ  is the number 
given in Theorem 1.7.

We next state the uniqueness theorems. In this paper, we say that the uniqueness holds for Eq. (1.1) if the following 
assertion is valid: 

If v, and ρp  with 

   
2 1 1 1

,0

3 1/ 1 2 1/

ˆ((0, ), ( ) ) ((0, ), ( ) ), ((0, ), ( ) ( )),

((0, ), ( )) ((0, ), ( ))

N N
p q p q p q q

q q
p q p q

v L T H H T L p L T H H

L T W H T Wρ − −

∈ Ω ∩ Ω ∈ Ω + Ω

∈ Γ ∩ Γ

0 =0 0 t=0. ( ( ) ) =( | ) on p/2 1/q .  <1, µ τ τ= Ω Γ +tdiv u in In addidiv G D n Htion u when
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satisfy the homogeneous equations:

    =0

D ( ( ) ) = 0, d = 0 in (0,T),
= 0 on (0,T),

( ( ) (( ) ) ) = 0 on (0,T),
( , ) | = (0,0) on ,

t

t

t

v iv v I ivv
A v n v

D v I
v

σ

µ
ρ ρ
µ δ ρ
ρ

Γ

Γ

∂ − − Ω×
∂ + ⋅∇ − ⋅ + Γ×
 − − + ∆ Γ×
 Ω×Γ

D

I n
F

p

p B
  (1.16)

then, = 0v  = 0p , and = 0ρ . 

And also, we say that the uniqueness holds for Eq. (1.6) with U , where U  is a subset of C , if the following assertion is 
valid: 

Let Uλ ∈ . If u , q  and h  with 

    2 1 1 3 1/
,0

ˆu ( ), ( ) ( ), ( )q
q q q qH q H H h W −∈ Ω ∈ Ω + Ω ∈ Γ

satisfy the homogeneous equations:

 

    

D ( ( ) ) = 0, d = 0 in ,
= 0 on ,

( ( ) (( ) ) ) = 0 on ,

u iv u ivu
h A h u n u
D u I h I n

σ

λ µ
λ
µ δ

Γ

Γ

− − Ω
 + ⋅∇ − ⋅ + Γ
 − − + ∆ Γ

D I
F

q

q B

  (1.17)

 then = 0u , = 0q  and = 0h . 

In the case where = 0Aσ , = 0uF , = 0hB , and δ  is a positive number, the uniqueness for Eq. (1.6) follows from the 
existence theorem for the dual problem. Moreover, the uniqueness for Eq.(1.1) can be proved by applying the uniqueness 
theorem for Eq. (1.6) to the Laplace transform of solutions with respect to time variable. Thus, we have 

Theorem 1.10: Assume that = 0Aσ , u = 0F , = 0hB , and δ  is a positive constant, and that the conditions i and ii 
stated in Theorem 1.7 holds. In addition, we assume that the weak Dirichelet problem is uniquely solvable on 1

,0
ˆ ( )qH ′ Ω  with 

= / ( 1)q q q′ − . Then, the following assertions about uniqueness hold: 

Let 1 < <q ∞  and 0 < < / 2ε π . Then, there exists a 0 > 0λ  such that for any , 0ε λλ ∈Σ , the uniqueness holds for Eq. (1.6). 

Let 0 < <T ∞  and 1 < , <p q ∞ . Then, the uniqueness holds for Eq. (1.1). 

 But, in the general case,, we do not have suitable dual problems, and so we prove the uniqueness by showing a priori 
estimates. In particular, we need a restriction on Ω .

Theorem 1.11: Assume that Ω  is a uniformly 3C  domain whose inside is finitely covering, the definition of which will 
be given in Sect. 7 below. Moreover, we assume that the conditions ii–iv are satisfied. Then, the following assertions 
concerning the uniqueness hold.

Let 1 < <q ∞  and 0 < < / 2ε π . Then, there exists a 0 > 0λ  such that for any , 0σ λ γσλ ∈Λ , the uniqueness for Eq. (1.6) 
holds. 

Let 0 < <T ∞  and 1 < , <p q ∞ . Then, the uniqueness for Eq. (1.1) holds. 

 Remark 1.12: If Ω  is a bounded domain, an exterior domain, a half space, a perturbed half space, a layer, a perturbed 
layer, and a tube, and if the boundary of Ω  is a hypersurface of 3C  class, then Ω  is a uniformly 3C  domain whose inside 
is finitely covering (cf. Example 7.2 in Sect. 7 below).

The paper is organized as follows: In Sect. 2, a reduced Stokes operator is introduced to eliminate the pressure term p  
from Eq. (1.1). And, we prove equivalence between Stokes operator and reduced Stokes operator. In Sect. 3, the existence 
of R  bounded solution operators is proved for the model problem in N

 . In Sect. 4, the existence of R  bounded solution 
operators is proved for the model problem in N

+ . In Sect. 5, the existence of R  bounded solution operator is proved in a 
bent half space. In Sect. 6, the existence of R  bounded solution operator is proved in a uniform 3C  domain by constructing 
a parametrix. In Sect. 7, we prove a priori estimates of solutions to Eq. (1.6) and as a result, we obtain the uniqueness 
for Eq. (1.6). In Sect. 8, the maximal regularity theorem is proved by applying the Weis operator valued Fourier multiplier 
theorem to the representation formula of solutions to Eq. (1.1) obtained by using the R  bounded solution operator. And 
also, the uniqueness for Eq. (1.1) is obtained by applying the uniqueness for Eq. (1.6) to the Laplace transform of Eq. (1.1) 
with respect to time variable. In Appendix A, a unique existence theorem for the weak Dirichlet problem is proved in N

  
and N

+ . In Appendix B, the regularity theorem for the weak Dirichlet problem is proved. Notice that the uniqueness of 
strong solutions does not hold in general. In Appendix C, some Poincarés’ type inequality is proved. Finally, in Appendix D, 
several properties of uniform 3C  domains are proved.
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Reduced Stokes equations
Equivalence of stokes problem and reduced stokes problem
Since the pressure term p  has no time evolution, we eliminate p  and the divergence equation: d = = div g ivu g  following 
the idea due to Grubb et al.,4 Abels et al.5 For this purpose, we introduce the reduced Stokes equations. Given 2 ( )N

qu H∈ Ω  
and 3 1/ ( )q

qh W −∈ Γ , let ( , )K u h  be a unique solution of the weak Dirichlet problem:

  
1
q ,0

ˆ( ( , ), ) = (D ( ( )) d , ) for any H ( )K u h iv D u ivuϕ µ ϕ φ ′Ω Ω∇ ∇ −∇ ∇ ∈ Ω    (2.1)

subject to

   ( , ) =< D( ) , > ( ) d on .K u h u n n h ivµ δ Γ− + ∆ − ΓuB     (2.2)

By Remark 1.5 1, we know the unique existence of 1 1
,0

ˆ( , ) ( ) ( )q qK u h H H∈ Ω + Ω  satisfying the estimate: 

    3 1/10( ) ( ) ( )(u, ) ( u )qL H Wq q q
K h M h −Ω Ω Γ

∇ ≤ ∇ +    (2.3)

 for some constant 0 > 0M . We consider the reduced Stokes equations:

   

D ( ( ) ( , ) ) = in ,
= on ,

( ( ) ( , ) (( ) ) ) = on .

u iv D u K u h f
h A h u n u d
D u K u h h n h

σ

λ µ
λ
µ δ

Γ

Γ

− − Ω
 + ⋅∇ − ⋅ + Γ
 − − + ∆ Γ

I

I I
F
B

   

(2.4)

Notice that the third condition in (2.4) is equivalent to

    ( (u) ) = and d u = on .D n h iv n hτ τµ ⋅ Γ    (2.5)

In fact, by (2.2) 

   =< (u) , > (u, ) ( ) = d u on .h n D n n K h ivµ ρ δ Γ⋅ − − + ∆ ΓB

We now discuss the equivalence between (1.6) and (2.4). We first assume that Eq. (1.6) is uniquely solvable. Let 
1 ( )N
qf H∈ Ω , 2 1/ ( )q

qd W −∈ Γ  and 1 ( )N
qh H∈ Ω . Let 1 ( )qg H∈ Ω  be a unique solution of the variational equation:

   1
q ,0( , ) ( , ) = ( , ) for any H ( )g g fλ ϕ ϕ ϕ ϕ ′Ω Ω Ω+ ∇ ∇ − ∇ ∈ Ω   (2.6)

subject to = n hg ⋅  on Γ . The unique existence of g  is guaranteed for , 0ε λλ ∈Σ  with large 0 > 0λ . From (2.6) it follows that

             
1( , ) = ( ( ), ) ,g f gϕ λ ϕ−

Ω Ω− +∇ ∇    (2.7)

and so d =iv gg  with 1= ( )f gλ− + ∇g . Let 2 ( )N
qu H∈ Ω , 1 1

,0
ˆ( ) ( )q qp H H∈ Ω + Ω  and 3 1/ ( )q

qh W −∈ Γ  be unique solutions of Eq. 
(1.6). In view of Definition 1.6, we have 

    1
q ,0

ˆ( , ) = ( , ) for any H ( ).u gϕ ϕ ϕ ′Ω Ω∇ ∇ ∈ Ω    (2.8)

Testing 1
,0

ˆ ( )qHϕ ′∈ Ω , from Eq. (1.6) we have 

  ( , ) = ( D ( D(u)) , ) = ( u, ) ( d u, ) ( ( (u, )), ) .f u iv iv K hϕ λ µ ϕ λ ϕ ϕ ϕΩ Ω Ω Ω Ω∇ − +∇ ∇ ∇ − ∇ ∇ + ∇ − ∇q q

Using d u =iv g  and (2.8), we have 

    ( u, ) ( d u, ) = ( , ) ( , ) = (f , ) ,iv g gλ ϕ ϕ λ ϕ ϕ ϕΩ Ω Ω Ω Ω∇ − ∇ ∇ ∇ − ∇ ∇ ∇

and so, we have 

     1
q ,0

ˆ( ( (u, )), ) = 0 for any H ( ).K h ϕ ϕ ′Ω∇ − ∇ ∈ Ωq

Moreover, by (2.2), (2.6), and the boundary condition in Eq. (1.6) 

   ( , ) =< D( ) , > ( ) n.h < D(u)n,n > ( ) dK u h u n n h iv uγµ δ ρ µ δΓ− − + ∆ − − + + ∆ +q B B

      = d = = 0iv u n h g g− ⋅ −

on Γ . Thus, the uniqueness implies that = ( , )K u hq , which yields that u  and h  are solutions of Eq. (2.4).

Conversely, we assume that Eq. (2.4) is uniquely solvable. Let f ( )N
qL∈ Ω , ( , ) ( )qg DI∈ Ωg , 2 1/ ( )q

qd W −∈ Γ  and 1 ( )N
qh H∈ Ω  

in Eq. (1.6). Let 1 1
,0

ˆ( ) ( )q qH Hθ ∈ Ω + Ω  be a unique solution of the weak Dirichlet problem:

     1
q ,0

ˆ( , ) = ( , ) for any H ( ),fθ ϕ ϕ ϕ ′Ω Ω∇ ∇ ∇ ∈ Ω   (2.9)

 subject to = n hθ − ⋅  on Γ , and then using θ  we write Eq. (1.6) as
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D ( D( ) ( )I) = , d u = = d g in ,

= on ,
( D( ) ( )I (( ) )I)n = on .

u iv u f iv g iv
h A h u n u d

u h h
σ

τ

λ µ θ θ
λ
µ θ δ

Γ

Γ

− − − −∇ Ω
 + ⋅∇ − ⋅ + Γ
 − − − + ∆ Γ

q

q

F
B

 (2.10)

 

Let 1 1
,0

ˆ( ) ( )q qL H H∈ Ω + Ω  be a unique solution of the weak Dirichlet problem: 

    1
q ,0

ˆ( , ) = ( , ) for any H ( )L g gϕ λ ϕ ϕ ′Ω Ω∇ ∇ −∇ ∇ ∈ Ω   (2.11)

subject to =L g−  on Γ . Let 2 ( )qu H∈ Ω  and 3 1/ ( )q
qh W −∈ Γ  be unique solutions of the equations:

 

   

D ( D( ) ( , )I) = f in ,
u n = on ,

( ( ) ( , ) (( ) ) ) = on ,

u iv u K u h L
h A h u d

D u K u h I h I n h
σ

λ µ θ
λ

µ δ
Γ

Γ

 − − −∇ +∇ Ω


+ ⋅∇ − ⋅ + Γ
 − − + ∆ Γ 

F

B

  (2.12)

where =h h gnτ + , that is =h hτ τ
  and n =h g⋅ . Testing 1

,0
ˆ ( )qHϕ ′∈ Ω  in Eq. (2.12) and using (2.9), we have 

   ( , ) = ( D ( (u) (u, ) ), ) = (u, ) ( d u, ) ,L u iv D K h I ivϕ λ µ ϕ λ ϕ ϕΩ Ω Ω Ω∇ ∇ − − ∇ ∇ − ∇ ∇

which, combined with (2.11), leads to 

   1
q ,0

ˆ( , ) ( , ) = ( , ) ( d u, ) for any H ( ).g g u ivλ ϕ ϕ λ ϕ ϕ ϕ ′Ω Ω Ω∇ − ∇ ∇ ∇ − ∇ ∇ ∈ Ω  (2.13)

 Since 1 1
,0 ,0

ˆ( ) ( )q qH H′ ′Ω ⊂ Ω , by (2.13) and = dg iv g , we have 

   1
q ,0(d g d u, ) ( (d g d ), ) = 0 for any H ( ).iv iv iv ivλ ϕ ϕ ϕ ϕ ′Ω Ω− + ∇ − ∇ ∈ Ω

Moreover, by (2.5) and n =h g⋅  on Γ , we have 

     d u d g = n = 0 on .iv iv h g− ⋅ − Γ

Thus, the uniqueness of solutions for , 0ε λλ ∈Σ  with large 0 > 0λ  yields that = d g = d ug iv iv . Thus, by (2.13) we have 

     1
q ,0

ˆ( , ) = ( , ) for any H ( )g uϕ ϕ ϕ ′Ω Ω∇ ∇ ∈ Ω

whenever , 0ε λλ ∈Σ . Thus, d u = = d giv g iv  in Ω . By (2.12), (2.5) and (1.9) 

      ( D(u)n) = h ,τ τν

      0 0 1, , , ,m m dq Nanε λ

Recalling that =g L−  (cf. (2.11)) and = h nθ − ⋅  (cf. (2.9)), we have 

     = < D( )n, > (u, ) ( )n h L u n K h hθ µ δ Γ⋅ − + + − − + ∆B

     =< ( )n, > ( (u, ) ) ( ) .D u n K h L hµ θ δ Γ− + − − + ∆B

On the other hand, by (2.12) 

     f = D ( D( ) ( (u, ) )I) in .u iv u K h Lλ µ θ− − + − Ω

Thus, u , = (u, )K h Lθ+ −p  and h  are unique solutions of Eq. (1.1).

R-bounded solution operators for the reduced stokes equation
In the following, for the reduced Stokes equations (2.4) we prove the existence of R  bounded solution operators as 
follows.

Theorem 2.1: Let 1 < <q ∞  and 0 < < / 2ε π . Let , 0σ λΛ  be the set defined in Theorem 1.7. Assume that the conditions 
i–iv in Theorem 1.7 are satisfied. Set

   

2 1/ 1

2 1/ 1
1 4 1 3 2 4

( ) = {( , , ) | ( ) , ( ), ( ) },

( ) = {( , , ) | , ( ) , ( ), ( ) }.

N q N
q q q q

N q N
q q q q

Y f d h f L d W h H

F F F F L F W F H

−

−

Ω ∈ Ω ∈ Γ ∈ Ω

Ω ∈ Ω ∈ Γ ∈ ΩY
 

(2.14)

Then, there exist a constant * 1λ ≥  and operator families: 

   2 3
, ,* *( ) H ( , ( ( ), ( ) )), ( ) H ( , ( ( ), ( )))N

r q q r q qol H ol Hσ λ γ σ λ γσ σλ λ∈ Λ Ω Ω ∈ Λ Ω ΩA L Y H L Y

such that for any , 0σ λ γσλ ∈Λ  and ( , , ) ( )qf d h Y∈ Ω , 

     1/2 1/2= ( )( , , , ), = ( )( , , , ),r ru f d h h h f d hλ λ λ λA H
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are solutions of (2.4), and 

                                /2
2 , *( ( ), ( ) )

({( ) ( ( )) | }) ,j
j r bNHq q

rτ σ λ γστ λ λ λ−Ω Ω
∂ ∈Λ ≤

L Y
R A

                                  
                                  3 , *( ( ), ( ))

({( ) ( ( )) | }) ,k
k r bHq q

rτ σ λ γστ λ λ λ−Ω Ω
∂ ∈Λ ≤

L Y
R H

for = 0,1

, = 0,1,2j  and = 0,1k . Here, br  is a constant depending on 1 2 3 3 0, , , , , ,m m m m p q Nandλ  but independent of 
(0,1)σ ∈ , and σγ  is the number defined in Theorem 1.7.

Remark 2.2 The norm of space ( )qY Ω  is defined by 2 1/ 1( ) ( ) ( ) ( )(f , ,h) = f h ;qY L W Hq q qq
d d −Ω Ω Γ Ω

+ + and the norm of space 
( )q ΩY  is defined by 

2 1/ 11 2 3 4 1 3 2 4( ) ( )( ) ( )( , , , ) = ( , ) .qW WL qq q q
F F F F F F F F− Γ ΩΩ Ω

+ +Y

Remark 2.3 As was pointed out in Subsec. 1.9, if u  and h  are solutions of Eq. (2.12), then u , h  are also solutions of 
Eq. (??) with = ( )K u Lθ+ −p , and so Theorem 1.7 follows immediately from Theorem 2.1. 

Model problem in N


 
Constant µ  case
In this subsection, we assume that µ  is a constant satisfying the assumption (1.2), that is 0 1m mµ≤ ≤ . Given 2 ( )N N

qu H∈  , 
let 0= ( )u K u  be a unique solution of the weak Laplace problem: 

   1 N
q

ˆ( , ) = (D ( (D(u)) d u, ) for any H ( ).N Nu iv ivϕ µ ϕ ϕ ′∇ ∇ −∇ ∇ ∈
 


  (3.1)

 In this subsection, we consider the resolvent problem: 

     N
0D ( D( ) (u)I) = f in ,u iv u Kλ µ− −    (3.2)

and prove the following theorem.

Theorem 3.1: Let 1 < <q ∞ , 0 < < / 2ε π , and 0 > 0λ . Then, there exists an operator family 
2

0 , 0( ) H ( , ( ( ) , ( ) ))N N N N
q qol L Hε λλ ∈ Σ  A L  such that for any 

0,= λετγλ Σ∈+ i  and f ( )N N
qL∈ 

, 0= ( )u fλA  is a unique 

solution of Eq. (3.2) and 

   /2
2 0 , 00( ( ) , ( ) )

({( ) ( ( )) | }) ( )j
j bN N N NL Hq q

rτ ε λτ λ λ λ λ− ∂ ∈Σ ≤

 L
R A   (3.3)

for = 0,1

 and = 0,1,2j , where 0( )br λ  is a constant depending on 0 0 1, , , , ,m m q Nandε λ  but independent of 0 1[ , ]m mµ ∈ .

Proof: We first consider the Stokes equations:

    Nu D ( (D(u) I) = f , d u = = d g in .iv iv g ivλ µ− − q   (3.4)

 Since D ( (u) I) = u d uiv D iv qµ µ µ− ∆ + ∇ −∇q , applying div  to (3.4), we have 

      d g 2 = d f ,iv g ivλ µ− ∆ + ∆q

and so, 

      1= 2 (d f d ).g iv ivgµ λ−+ ∆ −q

Combining this with (3.4) gives 

     1 1u u = f d f d g.iv g ivλ µ µ λ− −− ∆ −∇∆ − ∇ + ∇∆   (3.5)

We now look for a solution formula for Eq. (3.2). Let g  be a solution of the variational problem: 

    1 N
q

ˆ( , ) ( , ) = ( f , ) for any H ( ),N N Ng gλ ϕ ϕ ϕ ϕ ′+ ∇ ∇ − ∇ ∈
  



and then this g  is given by 1= ( ) dg iv fλ −− ∆ . According to (2.7), we set 1g = ( )f gλ− + ∇ . Inserting these formulas into 
(3.5) gives 

    1u u = ( 1) = f ( 1)( ) d f .f g ivλ µ µ µ λ −− ∆ − − ∇ − − − ∆ ∇

Thus, we have 

    1 1
2 2 2

[f ]( ) [f ]( )= [ ] ( 1) [ ],
| | ( | | )( | | )

u ξ ξ
ξ ξξ ξµ

λ µ ξ λ µ ξ λ ξ
− − ⋅

+ −
+ + +

F FF F

where F  and 1
ξ
−F  denote the Fourier transform and its inversion formula defined by 
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   1 1[ ]( ) = ( ) , [ ( )]( ) = ( ) .
(2 )

ix ix
N NNR R

f e f x dx g x e g dξ ξ
ξξ ξ ξ ξ

π
− ⋅ − ⋅∫ ∫F F

Thus, we define an operator family 0 ( )λA  acting on ( )N N
qf L∈ 

 by 

   1 1
0 2 2 2

[ ]( ) [ ]( )( ) = [ ] ( 1) [ ].
| | ( | | )( | | )

f ff ξ ξ
ξ ξξ ξλ µ

λ µ ξ λ µ ξ λ ξ
− − ⋅

+ −
+ + +

F FA F F

To prove the ℜ -boundedness of 0 ( )λA , we use the following lemmas. 

Lemma 3.2: Let 0 < < / 2ε π . Then, for any ελ ∈Σ  and [0, )x∈ ∞ , we have 

      | | (sin )(| | ).
2

x xελ λ+ ≥ +
  

 (3.6)

Proof : Representing =| | ie θλ λ  and using cos cos( ) = cosθ π ε ε≥ − −  for ελ ∈Σ , we have (3.6). 

Lemma 3.3: Let 1 < <q ∞  and let U  be a subset of C . Let = ( , )m m λ ξ  be a function defined on ( \ {0})NU ×   which is 
infinitely differentiable with respect to \ {0}Nξ ∈  for each Uλ ∈ . Assume that for any multi-index 0

Nα ∈  there exists a 
constant Cα  depending on α  such that 

      | || ( , ) | | |m Cα α
ξ αλ ξ ξ −∂ ≤    (3.7)

for any ( , ) ( \ {0})NUλ ξ ∈ ×  . Set 

      
| | 1

( ) = .max
N

b m Cα
α ≤ +

Let Kλ  be an operator defined by 

            1= [ ( , ) [ ]( )].K f m fλ ξ λ ξ ξ−F F

Then, the operator family { | }K Uλ λ ∈  is R -bounded on ( ( ))N
qL L  and 

     ,( ( ))
({ | }) ( )N N qL Rq

K U C b mλ λ ∈ ≤
L

R

for some constant ,q NC  depending solely on q  and N . 

Proof: Lemma 3.3 was proved by Enomoto et al.37 and Denk et al.38 By Lemma 3.2, we have 

 
/2/2

| | /2 | | /2
0 02 2 2| | | | , | | | | ( , = 1, , )

| | ( | | )( | | )

jj
k kmC C m N

ββ
α α α α
ξ α ξ α

ξ ξ λ ξλ ξ ξ λ ξ λ
λ µ ξ λ µ ξ λ ξ

− − −∂ ≤ ∂ ≤
+ + +



 

for any 0j∈ , 0k ∈  and 0
Nβ ∈  such that | |= 2j k β+ +  and for any 0

Nα ∈  and , 0( , ) ( \ {0})N
ε λλ ξ ∈Σ ×  . Thus, by 

Lemma 3.3, we have (3.3), which completes the proof of Theorem 3.1. We conclude this section by introducing some 
fundamental properties of R -bounded operators and Bourgain’s results concerning Fourier multiplier theorems with scalar 
multiplieres.

Proposition 3.4

a) Let X  and Y  be Banach spaces, and let T  and S  be R -bounded families in ( , )X YL . Then, = { | , }T S T S+ + ∈ ∈T S T S  
is also an R -bounded family in ( , )X YL  and ( , ) ( , ) ( , )( ) ( ) ( ).X Y X Y X Y+ ≤ +L L LR T S R T R S

b) Let X , Y  and Z  be Banach spaces, and let T  and S  be R -bounded families in ( , )X YL  and ( , )Y ZL , respectively. 
Then, = { | , }ST T S∈ ∈ST T S  also an R -bounded family in ( , )X ZL  and ( , ) ( , ) ( , )( ) ( ) ( ).X Z X Y Y Z≤L L LR ST R T R S

c) Let 1 < , <p q ∞  and let D  be a domain in N
 . Let = ( )m m λ  be a bounded function defined on a subset U  of   and 

let ( )mM λ  be a map defined by ( ) = ( )mM f m fλ λ  for any ( )qf L D∈ . Then, ( ( )) , , ( )({ ( ) | })L D m N q D L Uq M U C mλ λ
∞

∈ ≤LR .

d) Let = ( )n n τ  be a 1C -function defined on \ {0}R  that satisfies the conditions | ( ) |n τ γ≤  and | ( ) |nτ τ γ′ ≤  with some 
constant > 0c  for any \ {0}Rτ ∈ . Let nT  be an operator-valued Fourier multiplier defined by 1= ( [ ])nT f n f−F F  for 
any f  with [ ] ( , ( ))qf L D∈ F D . Then, nT  is extended to a bounded linear operator from ( , ( ))p qL L D

 into itself. 
Moreover, denoting this extension also by nT , we have , ,( ( , ( ))) .n p q DL R L Dp q

T C γ≤L

Proof: The assertions a) and b) follow from [36, p.28, Proposition 3.4], and the assertions c) and d) follow from [36, p.27, 
Remarks 3.2].36,39

Perturbed problem in N


In this subsection, we consider the case where ( )xµ  is a real valued funtion satisfying (1.2). Let 0x  be any point in Ω  and 
let 0d  be a positive number such that 00 ( )dB x ⊂ Ω . In view of (1.2), we assume that 

 0 1 1 d 00| ( ) ( ) | for x B (x ),x x m Mµ µ− ≤ ∈  (3.8)
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where we have set 1 0=M d . We assume that 1 (0,1)M ∈  below. Let ϕ  be a function in 0 ( )NC∞


 which equals 1 for 
/2 00 ( )dx B x∈  and 0 outside of 00 ( )dB x . Let

 0( ) = ( ) ( ) (1 ( )) ( ).x x x x xµ φ µ φ µ+ −  (3.9)

Let 1
0

ˆ( ) ( )N
qK u H∈

  be a unique solution of the weak Laplace problem: 

 1 N
q

ˆ( , ) = (D ( (u)) d u, ) for any H ( ).N Nu iv D ivϕ µ ϕ ϕ ′∇ ∇ −∇ ∇ ∈
 




 (3.10)

We consider the resolvent problem: 

 N
0D ( D(u) (u)I) = in .u iv K fλ µ− − 


 (3.11)

We shall prove the following theorem.

Theorem 3.5: Let 1 < <q ∞  and 0 < < / 2ε π . Then, there exist 1 (0,1)M ∈ , 0 1λ ≥  and an operator family 0 ( )λA  with 

 2
0 , 0( ) H ( , ( ( ) , ( ) ))N N N N

q qol L Hε λλ ∈ Σ

 A L

such that for any , 0ε λλ ∈Σ  and f ( )N N
qL∈  , = ( )u fλA  is a unique solution of Eq. (3.11), and 

 /2
2 0 , 0( ( ) , ( ) )

({( ) ( ( )) | })j
j bN N N NL Hq q

rτ ε λτ λ λ λ− ∂ ∈Σ ≤

 



L
R A

for = 0,1

 and = 0,1,2j . Where, br  is a constant independent of 1M  and 0λ . 

Proof : Let 1
0

ˆ= ( ) ( )N
x qu K u H∈   be a unique solution of the weak Laplace equation: 

 1 N
0 q

ˆ( u, ) = (D ( ( )D( ) d , ) for any H ( ).N Niv x u ivuϕ µ ϕ ϕ ′∇ ∇ −∇ ∇ ∈
 


 (3.12)

We consider the resolvent problem: 

 N
0 0D ( ( )D(u) ( )I) = f in .xu iv x K uλ µ− − 

 (3.13)

 Let 2
,10 ( ) H ( , ( ( ) , ( ) ))N N N N

x p qol L Hελ ∈ Σ  B L  be a solution operator of Eq. (3.13) such that for any ,1ελ ∈Σ  and f ( )N N
qL∈ 

, 0= ( )xu fλB  is a unique solution of Eq.(3.13) and

 /2
2 ,1 00( ( ) , ( ) )

({( ) ( ( )) | })j
j xN N N NL Hq q

τ ετ λ λ λ γ− ∂ ∈Σ ≤

 L
R B  (3.14)

for = 0,1

 and = 0,1,2j , where 0γ  is a constant independent of 1M  and φ∇ . Such an operator is given in Theorem 3.1 
with 0= ( )xµ µ  and 0 = 1λ . Inserting the formula: 0= ( )xu fλB  into (3.11) gives

 N
0D ( ( )D(u) (u)I) = f ( ) in ,u iv x K fλ µ λ− − −


R  (3.15)

where we have set

 00 0

0 0 0 0

( )f = D ( ( )D( ( )f ) ( )D( ( )f ))

( ( ( ) ) ( ( ) )).
x x

x x x

iv x x

K f K f

λ µ λ µ λ

λ λ

−

−∇ −





R B B

B B
 (3.16)

We shall estimate ( ) fλR . For any 1ˆ ( )N
qHϕ ′∈  , by (3.10) and (3.12), we have

 0 00 0 0 0( ( ( ( ) ) ( ( ) )), ) = ((D (( ( ) ( ))D( ( )f )), ) .x x x N x NR R
K f K f iv x xλ λ ϕ µ µ λ ϕ∇ − ∇ − ∇


B B B

Since 0 0( ) ( ) = ( )( ( ) ( ))x x x x xµ µ ϕ µ µ− − , by (3.8) and (1.2), we have 

 2
0 1 ,0 0 1 0( ) ( )( )

D (( ( ) ( )) ( ( )f ) ( ) ( )f .x x m xN NNL LLq qq
iv x x D M f C φµ µ λ λ λ∇− ≤ ∇ + ∇

 


 B B B

Here and in the following, ,1mC ϕ∇  denotes a generic constant depending on 1m  and 
( )NL Rφ

∞
∇ . Thus, we have 

 2
1 ,( ) 0 1 0 ( )( )

( ) ( ) ( )f .N x m x NNLq LL qq
f CM f C ϕλ λ λ∇≤ ∇ + ∇






R B B  (3.17)

Here and in the following, C  denotes a generic constants independent of 1M , 1m , and 
( )NLϕ

∞
∇



. Let 0λ  be any number 
1≥  and let n∈ , =1 , 0{ } ( )n n

k k ε λλ ⊂ Σ , and =1{ } ( ( ) )n N N n
k k qF L⊂  . By (3.17), (3.14) and Proposition 3.4, we have 

 
                                                 

1

0
=1 ( )

( ) ( )
qn

k k k
Nk Lq

r u f duλ∑∫


R

 

                                     

11 2
1 00

=1 ( )

2 ( ) ( )
qn

q q
k x k k

Nk Lq

M r u f duλ−≤ ∇∑∫


B

 

                                   

11
, 01 0

=1 ( )

2 ( ) ( )
qn

q q
k x k km

Nk Lq

C r u f duϕ λ−
∇+ ∇∑∫



B
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11 2
1 00

=1 ( )

2 ( ) ( )f
qn

q q
k x k k

Nk Lq

M r u duλ−≤ ∇∑∫


B

 

                           

11 /2 1/2
0, 01 0

=1 ( )

2 ( ) ( )
qn

q q q
k k x k km

Nk Lq

C r u f duϕλ λ λ− −
∇+ ∇∑∫



B

                               
11 /2

1 0 0 0,1 =1 ( )

2 ( ) ( )f .
qn

q q q q q
k km Nk Lq

M C r u duϕ λ γ− −

∇
≤ + ∑∫



Choosing 1M  so small that 1
1 02 (1 / 2)(1 / )q q q qM qγ− ≤  and 0 1λ ≥  so large that 1 /2

0 0,1
2 (1 / 2)(1 / 2)q q q q q

mC ϕγ λ− −
∇ ≤ , we have 

 , 0( ( )
({ ( ) | }) 1 / 2.NL Rq

ε λλ λ ∈Σ ≤
L

R R

Analogously, we have 

 , 0( ( )
({ ( ) | }) 1 / 2.NL Rq

τ ε λτ λ λ∂ ∈Σ ≤
L

R R

Thus, 1
=1( ( )) = ( ) j

jI Iλ λ∞−− +∑R R  exists and 

      1
, 0( ( )

({( ) ( ( )) | }) 4 for =0,1.NL Rq
Iτ ε λτ λ λ−∂ − ∈Σ ≤



L
R R  (3.18)

Setting 1
0 0( ) = ( )( ( ))x Iλ λ λ −−A B R , by (3.14), (3.18) and Propsoition 3.4, we see that 0 ( )λR  is a solution operator satisfying 

the required properties with 0= 4br γ .

To prove the uniqueness of solutions of Eq. (3.11), let 2 ( )N N
qu H∈   be a solution of the homogeneous equatuion: 

 N
0D ( D( ) ( )I) = 0 in .u iv u K uλ µ− − 



And then, u  satisfies the non-homogeneous equation: 

 N
0 0D ( ( )D( ) ( )I) = in ,xu iv x u K u Ruλ µ− − 

 (3.19)

where we have set 

 0 0 0= D (( (x) ( ))D(u)) ( (u) (u)).xRu iv x K Kµ µ− − +∇ −



Analogously to the proof of (3.8), we have 

 2
1 ,( ) ( )1( )

.N NmNL Lq qLq
Ru CM u C uφ∇≤ ∇ + ∇

 



 (3.20)

On the other hand, applying Theorem 3.1 to (3.19) for ,1ελ ∈Σ , we have 

 1/2
1 2( ) ( ) ( ) ( )| | | | .N N N NL H H Lq q q q

u u u C Ruλ λ+ + ≤
   

 (3.21)

Combining (3.20) and (3.21) gives 

 1/2
1 20 , 1( ) ( )1( ) (1 ) u 0.N Nm H Hq q

CC u CMϕλ ∇− + − ≤
 

Choosing 1 (0,1)M ∈  so small that 11 > 0CM−  and 0 1λ ≥  so large that 1/2
0 ,1 > 0mCC ϕλ ∇− , we have = 0u . This proves the 

uniqueness, and therefore we have proved Theorem 3.5

Model problem in N
+

In this section, we assume that µ , δ , and Aσ  ( [0,1)σ ∈ ) are constants and an 1−N  constant vector satisfying the 
conditions:

    0 1 0 2, , = 0, | | ( (0,1)).m m A A mσµ δ σ≤ ≤ ≤ ∈                   (4.1)

 Let 

  1 0 1 0= {( , , ) | > 0}, = {( , , ) | = 0}, = (0, ,0, 1).N N N N
N N N Nx x x x x x n+ ∈ ∈ −      

Given 2 ( )N N
qu H +∈   and 3 1/

0( )q N
qh W −∈  , let 1 1

0 ,0
ˆ( , ) ( ) ( )N N

q qK u h H H+ +∈ +   be a unique solution of the weak Dirichlet 
problem:

   
1 N

0 q ,0
ˆ( ( , ), ) = (D ( ( )) d , ) for any H ( ),N NK u h iv D u ivuϕ µ ϕ ϕ ′

+ +
∇ ∇ −∇ ∇ ∈

 


        (4.2)

subject to 0 0 0( , ) =< D(u) , > d uK u h n n h ivµ δ ′− ∆ −  on 0
N


, where 1 2 2

=1= /N
jjh h x−′∆ ∂ ∂∑ . In this section, we consider the half 

space problem:
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N
0

N
0 0

N
0 0 0 0

u D ( D( ) (u, )I) = f in ,

u n = on ,

( D(u) ( , )I)n ( )n = h on ,

iv u K h

h A h d

K u h h
σ

λ µ

λ

µ δ

+ − −
 ′+ ⋅∇ − ⋅
 ′− − ∆







   (4.3)

 where 1 1= ( , , )N −′∇ ∂ ∂
. The last equations in (4.3) are equivalent to 

     N
0 0 0( D(u) ) = and d u = h on .n h iv nτ τµ ⋅ 

Where, we have set 0 0= < , >h h h n nτ − . . We shall show the following theorem

Theorem 4.1: Let 1 < <q ∞ , let µ , δ , and Aσ  are constants and an 1N −  constant vector satisfying the conditions 
in (4.1). Let , 0σ λΛ  the set defined in Theorem 1.7. Assume that the conditions in (4.1) hold. Let ( )N

qY +  and ( )N
q +Y  be 

spaces defined by replacing Ω  and Γ  by N
+  and 0

N
  in (2.14). Then, there exist a constant 0 1λ ≥  and operator families:

   2 3
0 , 0 ,0 0( ) H ( , ( ( ), ( ) )), ( ) H ( , ( ( ), ( )))N N N N N

q q q qol R H R ol Hσ λ σ λλ λ+ + + +∈ Λ ∈ Λ  A L Y H L Y   (4.4)

 such that for any , 0= i σ λλ γ τ+ ∈Λ  and ( , , ) ( )N
qf d h Y +∈  , 

    1/2 1/2
0 0= ( )( , , , ), = ( )( , , , ),u f d h h h f d hλ λ λ λA H

are unique solutions of (4.3), and 

 
            

/2
2 0 , 0( ( ), ( ) )

3 0 , 0( ( ), ( ))

({( ) ( ( )) | }) ,

({( ) ( ( )) | }) ,

j
j bN N NHq q

k
N k N bHq q

r

r

τ σ λ

τ σ λ

τ λ λ λ

τ λ λ λ

−
+ +

−
+ +

∂ ∈Λ ≤

∂ ∈Λ ≤



 



 

L Y

L Y

R A

R H
   (4.5)

 for = 0,1

, = 0,1,2j  and = 0,1k . Here, br  is a constant depending on 0m , 1m , 2m , 0λ , q , and N . 

Remark 4.2: In this section, what the constant depends on 0m , 1m , 2m  means that the constant c  depends on 0,m  1,m  2m  
but is independent of µ , δ  and Aσ  whenever 0 1[ , ]m mµ ∈ , 0 1[ , ]m mδ ∈ , and 2| |A mσ ≤  for [0,1)σ ∈ . 

To prove Theorem 4.1, as an auxiliary problem, we first consider the following equations: 

 
    

N

N
0 0

D ( D( ) I) = 0, d v = 0 in ,

( ( ) ) = on ,

v iv v iv

D v I n h

λ µ θ

µ θ
+ − −


−





    (4.6)

and we shall prove the following theorem, which was essentially proved by Shibata et al.40

Theorem 4.3 Let 1 < <q ∞ , (0, / 2)ε π∈ , and 0 > 0λ . Let 

                        1
3 4 3 4' ( ) = {( , ) | ( ) , ( ) },N N N N N

q q qF F F L F H+ +∈ ∈  Y

                                1
,l

ˆ ( ) = { ( ) | ( )}.N N N
q q oc qH L Lθ θ+ + +∈ ∇ ∈  

Then, there exists a solution operator 2
, 0( ) H ( , ( '( ), ( ) ))N N N

qol Hε λλ + +∈ Σ  V L Y  such that for any , 0= i ε λλ γ τ+ ∈Σ  and 
1 ( )N N
qh H +∈  , 1/2= ( )( h,h)v λ λV  are unique solutions of Eq. (4.3) with some 1ˆ ( )N

qHθ +∈   and 

                    /2
2 , 00( ' ( ), ( ) )

({( ) ( ( )) | }) ( )j
j bN N NHq q

rτ ε λτ λ λ λ λ−
+

∂ ∈Σ ≤

 L Y
R V

for = 0,1

, and = 0,1,2j . Here, 0( )br λ  is a constant depending on 0m , 1m , 2m , ε , 0λ , N , and q . 

Proof: To prove Theorem 4.3, we start with the solution formulas of Eq. (4.3), which were obatined in Shibata et al.,40 
essentially, but for the sake of the completeness of the paper as much as possible and also for the later use, we will derive 
them in the following. Applying the partial Fourier transform with respect to 1 1= ( , , )Nx x x −′


 to Eq. (4.3), we have 

 

 

2 2 2 2

1

=1

N

ˆ ˆˆ ˆ ˆ ˆ| | = 0, | | = 0 ( > 0)

ˆ ˆ = 0 ( > 0),

ˆˆ ˆ ˆ( ) = , 2 = for x =0.

j N j j N N N N N

N

j j N N N
j

N j j N j N N N

v v i v v x

v v x

v i v g v g

λ µ ξ ξ θ λ µ ξ θ

ξ

µ ξ µ θ

−

 ′ ′+ −∂ + + −∂ + ∂

 + ∂

 ∂ + ∂ −

∑  (4.7)

Here, for = ( , )Nf f x x′ , 1
1 1= ( , , ) N

Nx x x −
−′ ∈ 

, ( , )Nx a b∈ , f̂  denotes the partial Fourier transform of f  with respect to 
x′  defined by 

                              1
ˆ ( , ) = '[ ( , )]( ) = ( , )ix

N N NNf x f x e f x x dxξξ ξ ′ ′− ⋅
−′ ′ ′ ′⋅ ∫



F

with 1
1 1= ( , , ) N

Nξ ξ ξ −
−′ ∈ 

 and 1
=1= N

j jjx xξ ξ−′ ′⋅ ∑ , and we have set ˆ= ( ,0)j jg h ξ′ . To obtain solution formula, we set 
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ˆˆ = , =Ax Bx AxN N N

j j jv e e eα β θ ω− − −+

with =| |A ξ′  and 1 2= | |B λµ ξ− ′+ , and then from (4.7) we have 

                               
2 2 2 2( ) = 0, ( ) = 0,j i NB A i B A Aµα ξ ω µα ω− + − −  (4.8)

                                                                 

1 1

=1 =1
= 0, = 0,

N N

k k N k k N
k k

i A i Bξ α α ξ β β
− −

− −∑ ∑  (4.9)

                                         {( ) ( )} = ,j j j N N jA B i gµ α β ξ α β+ − +  (4.10)

                                               2 ( ) = .N N NA B gµ α β ω+ +  (4.11)

The solution formula of Eq. (4.3) was given in Shibata et al.,40 but there is an error in the formula in [ref.40, 4.17] such as40 

 ˆ{( ) ( )} = ( ,0),j j j N N jA B i hµ α β ξ α β ξ′+ + +

which should read 

 ˆ{( ) ( )} = ( ,0)j j j N N jA B i hµ α β ξ α β ξ′+ − +

as (4.10) above. The formulas obtained in are correct, but we repeat here how to obtain jα , jβ  and ω , because this error 
confuses readers.

We first drive 2 2×  system of equations with respect to Nα  and Nβ . Multiplying (4.10) with jiξ , summing up the resultant 

formulas from = 1j  through 1N −  and writing 1
=1= N

j jji m i mξ ξ−′ ′⋅ ∑  for { , , }j j j jm gα β∈  give 

 2 ( ) = .N NAi Bi A i gµ ξ α µ ξ β α β ξ′ ′ ′ ′ ′ ′⋅ + ⋅ + + ⋅  (4.12)

By (4.9), 

 = , = ,N Ni A i Bξ α α ξ β β′ ′ ′ ′⋅ ⋅  (4.13)

which, combined with (4.12), leads to 

 2 2 2 12 ( ) = .N NA A B i gα β µ ξ− ′ ′+ + ⋅  (4.14)

By (4.8), 

 
2 2( )= ,N

B A
A

µω α−  (4.15)

which, combined with (4.11), leads to 

 2 2 1( ) 2 = .N N NA B AB Agα β µ−+ +  (4.16)

Thus, setting 

 
2 2 2

2 2

2
= (Lopatinskimatrix),

2

A B A

AB A B

 +
  + 

L

we have 

 
1

1
= .N

N N

i g

Ag

β µ ξ
α µ

−

−

 ′ ′⋅ 
       

L

Since 

 2 2 2 3 4 3 2 2 4det = ( ) 4 = 4 2 = ( ) ( , )A B A B A A B A B B B A D A B+ − − + + −L

with 

 3 2 2 2 3D( , ) = 3 ,A B B AB A B A+ + −

we have

 
2 2 2

1
2 2

21= .
( ) ( , ) 2

A B A
B A D A B AB A B

−  + −
  − − + 

L

Thus, we have 

 

 

2 2 3

2 2

1= (( ) 2 ),
( ) ( , )

1= (2 ( ) )).
( ) ( , )

N N

N N

A B i g A g
B A D A B

ABi g A B Ag
B A D A B

β ξ
µ

α ξ
µ

′ ′+ ⋅ −
−
− ′ ′⋅ − +

−

 (4.17)

 In particular, 

 ˆ = = ( ) ( ) .Ax Bx Ax Bx BxN N N N N
N N N N N Nv e e e e eα β α α β− − − − −+ − + +
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We have 

 

2 2 2 2 3

2 2 2

2

1= (( 2 ) (( ) 2 ) )
( ) ( , )

1= (( ) ( ) )
( ) ( , )

1= (( ) ( )( ) )
( ) ( , )

1= (( ) ( ) ).
( , )

N N N

N

N

N

A B AB i g A B A A g
B A D A B

B A i g A B A g
B A D A B

B A i g A B A A B g
B A D A B

B A i g A A B g
D A B

α β ξ

ξ
µ

ξ
µ

ξ
µ

′ ′+ + − ⋅ + + −
−

′ ′− ⋅ + −
−

′ ′− ⋅ + − +
−

′ ′− ⋅ + +

 (4.18)

Setting 

 ( ) = ,
Bx AxN N

N
e ex

B A

− −−
−

M

we have 

 2 2ˆ = ( )(2 ( ) ) (( ) ( ) ).
( , ) ( , )

BxN

N N N N
A ev x Bi g A B g B A i g A A B g

D A B D A B
ξ ξ

µ µ

−

′ ′ ′ ′⋅ − + + − ⋅ + +M  (4.19)

By (4.15) and (4.17), 

     
2 2 2 2

2 2( ) ( ) 1= = (2 ( ) ))
( ) ( , )N N

B A B A ABi g A B Ag
A A B A D A B

µ µω α ξ
µ

− − − ′ ′⋅ − +
−

 
                                            2 2( )= (2 ( ) ))

( , ) N
A B Bi g A B g

D A B
ξ+ ′ ′− ⋅ − +

and so 

 2 2( )ˆ = (2 ( ) )).
( , )

AxN

N
A B e Bi g A B g

D A B
θ ξ

−+ ′ ′− ⋅ − +  (4.20)

By (4.8), 

 

 

2 2
2 2 2 2

2 2

= = (2 ( ) ))
( , )( ) ( )

= (2 ( ) ).
( ) ( , )

j j
j N

j
N

i i A B Bi g A B g
D A BB A B A

i
Bi g A B g

B A D A B

ξ ξ
α ω ξ

µ µ
ξ

ξ
µ

+ ′ ′− ⋅ − +
− −

′ ′⋅ − +
−

 (4.21)

 

By (4.10) 
 1 1= ( ( ) ).j j j N N jg i A

B B
β ξ α β α

µ
+ + −

By (4.18) and (4.21) 
( )j N N ji Aξ α β α+ −

 
2 2 2= {( ) ( )( ) (2 ( ) )}

( ) ( , )
j

N N
i

B A i g A B A A B g A Bi g A B g
B A D A B

ξ
ξ ξ

µ
′ ′ ′ ′− ⋅ + − + − ⋅ − +

−
 

2 2 2= {( 4 ) 2 )},
( ) ( , )

j
N

i
A AB B i g AB g

B A D A B
ξ

ξ
µ

′ ′− + ⋅ +
−

 and therefore 

 2 2 21= {( 4 ) 2 )}.
( ) ( , )

j
j j N

i
g A AB B i g AB g

B B A D A B B
ξ

β ξ
µ µ

′ ′+ − + ⋅ +
−

 (4.22)

 Combining (4.21) and (4.22) gives 
2 2ˆ = {2 ( ) }

( ) ( , )

AxBx NN j
j j N

i eev g Bi g A B g
B B A D A B

ξ
ξ

µ µ

−−

′ ′+ ⋅ − +
−

 
2 2 2{( 4 ) 2 )}

( ) ( , )

BxN
j

N
i e

A AB B i g AB g
B A D A B B

ξ
ξ

µ

−

′ ′+ − + ⋅ +
−

 1= ,j Ng Ii g IIg
B

ξ
µ

′ ′+ ⋅ +
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with 

    2 2= 2 ( 4 ),
( ) ( , ) ( ) ( , )

Ax BxN N
j ji e i e

I B A AB B
B A D A B B A D A B B
ξ ξ

µ µ

− −

+ − +
− −

 

     2 2= ( ) 2
( ) ( , ) ( ) ( , )

Ax BxN N
j ji e i e

II A B AB
B A D A B B A D A B
ξ ξ

µ µ

− −

− + +
− −

We proceed as follows: 
2 2( )

= 2 ( 4 3 )
( ) ( , ) ( ) ( , )

Ax Bx BxN N N
j ji e e i e

I B A AB B
B A D A B B A D A B B

ξ ξ
µ µ

− − −−
+ − +

− −
 

2 ( ) (3 )
= ;

( , ) ( , )

BxN
j N ji B x i B A e
D A B D A B B

ξ ξ
µ µ

−−
− +

M

 
2 2

2 2( ) ( 2 )
= ( )

( ) ( , ) ( ) ( , )

Ax Bx BxN N N
j ji e e i e A AB B

II A B
B A D A B B A D A B

ξ ξ
µ µ

− − −− − +
− + −

− −
 

2 2( ) ( ) ( )
= .

( , ) ( , )

BxN
j N ji A B x i e B A

D A B D A B
ξ ξ

µ µ

−+ −
−

M

Therefore, we have 

 2 2( )
ˆ = (2 ( ) ) ((3 ) ( ) ).

( , ) ( , )

BxBx NN j N j
j j N N

i x i eev g Bi g A B g B A i g B B A g
B D A B D A B B

ξ ξ
ξ ξ

µ µ µ

−−

′ ′ ′ ′− ⋅ − + + − ⋅ − −
M

 (4.23)

To define solution operators for Eq. (4.3), we make preparations. 

Lemma 4.4: Let sε   and 0 / 2ε π< < . Then, there exists a positive constant c  depending on ε , 1m  and 2m  such that

     1/2 1 1/2(| | ) R | | ( | |) ,c A eB B Aλ µ λ−+ ≤ ≤ ≤ +                 (4.24)

     1/2 3 1 1/2 3(| | ) | ( , ) | 6(( | |) ) .c A D A B Aλ µ λ−+ ≤ ≤ +    (4.25)

for any ελ ∈Σ  and 1 2[ , ]m mµ ∈ .

Proof : The inequality in the left side of (4.24) follows immediately from Lemma 3.2. Notice that 

 3 2 2 3 2 2 2 1 3( , ) = 3 = ( 2 ) ( )D A B B A B AB A B B A A A Aµ λ−+ + − + + + −

 1 2 1= ( 4 ) .B A Aµ λ µ λ− −+ +

If we consider the angle of 1 2( 4 )B Aµ λ− +  and 1Aµ λ−− , then we see easily that D( , ) = 0A B / . Thus, studying the following 
three cases: 1/2

1 | |R Aλ ≤ , 1/2
1 | |R A λ≤  and 1 1/2

1 1| |R A R Aλ− ≤ ≤  for sufficient large 1 > 0R , we can prove the inequality in 
the left side of (4.25). The detailed proof was given in Shibata et al.41 The independence of the constant c of ελ ∈Σ  and 

0 1[ , ]m mµ ∈  follows from the homogeneity: 1 2 2 1 2( ) ( ) =m mA m Aµ λ µ λ− −+ +  and 3( , ) = ( , )D mA mB m D A B  for any > 0m  

and the compactness of the interval 0 1[ , ]m m . 

To introduce the key tool of proving the R  boundedness in the half space, we make a definition. 

Definition 4.5: Let V  be a domain in C , let 1= ( \ {0})NV R −Ξ × , and let :m CΞ→ ; ( , ) ( , )mλ ξ λ ξ′ ′


 be 1C  with respect 
to τ , where = i Vλ γ τ+ ∈ , and C∞  with respect to 1 \ {0}NRξ −′∈ . 

1) ( , )m λ ξ′  is called a multiplier of order s  with type 1  on Ξ , if the estimates: 

     
1/2 | | 1/2 | || ( , ) | (| | | |) , | ( ( , )) | (| | | |)s sm C m Cκ κ κ κ

ξ κ ξ τ κλ ξ λ ξ τ λ ξ λ ξ′ ′ ′ ′− −
′ ′ ′ ′′ ′ ′ ′∂ ≤ + ∂ ∂ ≤ +

 hold for any multi-index 0
Nκ ∈  and with some 

constant Cκ ′  depending solely on κ′  and V . 

2) ( , )m λ ξ′  is called a multiplier of order s  with type 2  on Ξ , if the estimates: 

 1/2 | | 1/2 | || ( , ) | (| | | |) | | , | ( ( , )) | (| | | |) | |s sm C m Cκ κ κ κ
ξ κ ξ τ κλ ξ λ ξ ξ τ λ ξ λ ξ ξ′ ′ ′ ′− −
′ ′ ′ ′′ ′ ′ ′ ′ ′∂ ≤ + ∂ ∂ ≤ +  hold for any multi-index 0

Nκ ∈  and 

( , )λ ξ′ ∈Ξ  with some constant Cκ ′  depending solely on κ′  and V . 

Let , ( )s iM V  be the set of all multipliers of order s  with type i  on Ξ  for = 1,2i . For , ( )s im M V∈ , we set | |( , ) = max NM m V Cκ κ′ ≤ ′ . 
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Let 1
ξ
−
′F  be the inverse partial Fourier transform defined by 

 1
11

1[ ( , )]( ) = ( , ) .
(2 )

ix
N NNN R

f x x e f x dξ
ξ ξ ξ ξ

π
′ ′− ⋅

′ −−
′ ′ ′ ′∫F

Then, we have the following two lemmas which were proved essentially by Shibata et al.42 Lemma 5.4 and Lemma 5.6]. 

Lemma 4.6: Let 0 < < / 2ε π , 1 < <q ∞ , and 0 > 0λ . Given 2,1 , 0( )m M σ λ−∈ Λ , we define an operator ( )L λ  by 

 ( )1 1/2
0

ˆ[ ( ) ]( ) = [ ( , ) ( , )]( ) .B x yN N
N NL g x m e g y x dyξλ λ ξ λ ξ

∞ − +−
′ ′ ′ ′∫ F

Then, we have 
 /2

2 , 00( ( ), ( ) )
({( ) ( ( )) | }) ( )j

j x i bN N NL R H Rq q
L rα

τ σ λτ λ λ λ λ−
+ +

∂ ∂ ∈Λ ≤

L
R

for any = 0,1  and = 0,1,2j . Where τ  denotes the imaginary part of λ , and 0( )br λ  is a constant depending on , 0( , )M m σ λΛ  
ε , 0λ , N , and q . 

 Lemma 4.7: Let 0 < < / 2ε π , 1 < <q ∞ , and 0 > 0λ . Given 2,2 , 0( )m M σ λ−∈ Λ , we define operators ( )iL λ  ( = 1, ,4)i 

 by 
( )1

1 0
ˆ[ ( ) ]( ) = [ ( , ) ( , )]( ) ,B x yN N

N NL g x m Ae g y x dyξλ λ ξ ξ
∞ − +−

′ ′ ′ ′∫ F

( )1
2 0

ˆ[ ( ) ]( ) = [ ( , ) ( , )]( ) ,A x yN N
N NL g x m Ae g y x dyξλ λ ξ ξ

∞ − +−
′ ′ ′ ′∫ F

1 2
3 0

ˆ[ ( ) ]( ) = [ ( , ) ( ) ( , )]( ) ,N N N NL g x m A x y g y x dyξλ λ ξ ξ
∞ −

′ ′ ′ ′+∫ F M

1 1/2
4 0

ˆ[ ( ) ]( ) = [ ( , ) ( ) ( , )]( ) .N N N NL g x m A x y g y x dyξλ λ ξ λ ξ
∞ −

′ ′ ′ ′+∫ F M

Then, we have 

 /2
2 , 00( ( ), ( ) )

({( ) ( ( )) | }) ( )j
j x i bN N NL R H Rq q

L rα
τ σ λτ λ λ λ λ−

+ +
∂ ∂ ∈Λ ≤

L
R

for = 0,1

 and = 0,1,2j . Where τ  denotes the imaginary part of λ , and 0( )br λ  is a constant depending on , 0( , )M m σ λΛ  
ε , 0λ , N , and q . 

To construct solution operators, we use the following lemma. 

Lemma 4.8: Let 0 < < / 2ε π , 1 < <q ∞  and 0 > 0λ . Given multipliers, 1 2,1 , 0( )n M σ λ−∈ Λ , 2 2,2 , 0( )n M σ λ−∈ Λ , and 
3 1,2 , 0( )n M σ λ−∈ Λ , we define operators ( )iT λ  ( = 1,2,3)i  by

1 1/2
1 1

ˆ( ) = [ ( , ) ( ,0)]( ),BxNT h e n h xξλ λ λ ξ ξ−−
′ ′ ′ ′F
1

2 2
ˆ( ) = [ ( , ) ( ,0)]( ),BxNT h Ae n h xξλ λ ξ ξ−−

′ ′ ′ ′F L
1

3 3
ˆ( ) = [ ( ) ( , ) ( ,0)]( ).NT h A x n h xξλ λ ξ ξ−

′ ′ ′ ′F M

Let 

 1
1 2 1 2( ) = {( , ) | ( ), ( )}.N

q q qG G G L G H+ + +∈ ∈ 

   

Then, there exist operator families 2
, 0( ) H ( , ( ( ), ( )))N N

i q qol Hσ λλ + +∈ Λ  T L Z  such that for any , 0= i σ λλ γ τ+ ∈Λ  and 
1 ( )N
qh H +∈  , 1/2( ) = ( )( , )i iT h h hλ λ λT  and 

 /2
2 , 00( ( ), ( ))

({( ) ( ( )) | }) ( )j
j i bN NR H Rq q

rτ σ λτ λ λ λ λ−
+ +

∂ ∈Λ ≤

L Z
R T  (4.26)

for = 0,1

, = 0,1,2j . Where 0( )br λ  is a constant depending on , 0( , )iM n σ λΛ  ( = 1,2,3)i , ε , 0λ , N , and q . 

Proof : By Volevich’s trick we write 
( )1 1/2

1 10
ˆ( ) = [ ( ( , ) ( , ))]( )B x yN N

N N
N

T h e n h y x dy
yξλ λ λ ξ ξ

∞ − +−
′

∂ ′ ′ ′−
∂∫ F

( )1 1/2
10

ˆ= [ ( , ) ( , )]( )B x yN N
N N Ne n h y x dyξ λ λ ξ ξ

∞ − +−
′ ′ ′ ′− ∂∫ F

 1/2
( )1 1/2 1/2

10
ˆ[ ( , ) ( , )]( )B x yN N

N Ne n h y x dy
Bξ

λλ λ ξ λ ξ
µ

∞ − +−
′ ′ ′ ′+ ∫ F

 1/21
( )1

10
=1

[ ( , ) [ ( , )]]( ) ,
N

jB x yN N
j N N

j

i
Ae n h y x dy

B Aξ
ξλ λ ξ

− ∞ − +−
′ ′ ′− ∂ ⋅∑∫ F F

where we have used the formula: 
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1 2 1

=1
= = .

N
j

j
j

iA AB i
B B B A

ξµ λ λ ξ
µ µ

− −+
− ∑

Let
( )1 1/2

1 1 2 1 20
( )( , ) = [ ( , ) [ ( , )]]( )B x yN N

N N NG G e n G y x dyξλ λ λ ξ
∞ − +−

′ ′ ′− ∂ ⋅∫T F F

 
1/2

( )1 1/2
1 20

[ ( , ) [ ( , )]]( )B x yN N
N Ne n G y x dy

Bξ
λλ λ ξ
µ

∞ − +−
′ ′ ′+ ⋅∫ F F

 
1/21

( )1
1 20

=1
[ ( , ) [ ( , )]]( ) ,

N
jB x yN N

j N N
j

i
Ae n G y x dy

B Aξ
ξλ λ ξ

− ∞ − +−
′ ′ ′− ∂ ⋅∑∫ F F

and then, 1/2
1 1( ) = ( )( , )T h h hλ λ λT . Moreover, Lemma 4.6 and Lemma 4.7 yield (4.26) with = 1j , because 

 
1/2 1/2

1 2,1 , 1 2,1 , 1 2,2 ,0 0 0( , ) ( ), ( , ) ( ), ( , ) ( ).ji
n M n M n M

B B Aσ λ σ λ σ λ
ξλ λλ ξ λ ξ λ ξ

µ− − −′ ′ ′∈ Λ ∈ Λ ∈ Λ

Analogously, we can prove the existence of 2 ( )λT . To construct 3( )λT , we use the formula: 

 ( ) = ( ),BxN
N N

N
x e A x

x
−∂

− −
∂

M M

and then, by Volevich’s trick we have 

 1
3 30

ˆ( ) = [ ( ( ) ( , ) ( , ))]( ) =N N N N
N

T h A x y n h y x dy I II
yξλ λ ξ ξ

∞ −
′

∂ ′ ′ ′− + − +
∂∫ F M

with 
1

30
ˆ= [ ( ) ( , ) ( , )]( ) ;N N N N NI A x y n h y x dyξ λ ξ ξ

∞ −
′ ′ ′ ′+ ∂∫ F M

 
( )1 2

30
ˆ= [( ( )) ( , ) ( , )]( ) .B x yN N

N N N NII Ae A x y n h y x dyξ λ ξ ξ
∞ − +−

′ ′ ′ ′+ +∫ F M

Using the formula: 

 
2 1/2 1/2 1

1/2 1/2
2 2 2 2 2

=1
1 = = = ,

N
j

j
j

iB A A i
B B B B B

ξλ λλ λ ξ
µ µ

−

+ − ∑
we have 

1/2
1 1/2

320
ˆ= [ ( ) ( , ) ( , )]( )N N N N NI A x y n h y x dy

Bξ
λλ λ ξ ξ
µ

∞ −
′ ′ ′ ′+ ∂∫ F M

1 2
320

ˆ[ ( ) ( , ) ( , )]( ) ;N N N N N
AA x y n h y x dy

Bξ λ ξ ξ
∞ −

′ ′ ′ ′+ + ∂∫ F M

 1/2
( )1 2 1/2

320
ˆ= [( ( )) ( , ) ( , )]( )B x yN N

N N N NII Ae A x y n h y x dy
Bξ

λ λ ξ λ ξ
µ

∞ − +−
′ ′ ′ ′+ +∫ F M

 1
( )1 2

320
=1

[( ( )) ( , ) [ ( , )]]( ) .
N

jB x yN N
N N j N N

j

i
Ae A x y n h y x dy

Bξ
ξ

λ ξ
− ∞ − +−

′ ′ ′− + + ∂ ⋅∑∫ F M F

 Let 

3 1 2( )( , )G GλT
1/2

1 1/2
3 220

= [ ( ) ( , ) [ ( , )]]( )N N N N NA x y n G y x dy
Bξ

λλ λ ξ
µ

∞ −
′ ′ ′− + ∂ ⋅∫ F M F

 
1 2

3 220
[ ( ) ( , ) [ ( , )]]( )N N N N N

AA x y n G y x dy
Bξ λ ξ

∞ −
′ ′ ′− + ∂ ⋅∫ F M F

 1/2
( )1 2

3 120
[( ( )) ( , ) [ ( , )]]( )B x yN N

N N N NAe A x y n G y x dy
Bξ

λ λ ξ
µ

∞ − +−
′ ′ ′+ + + ⋅∫ F M F

 1
( )1 2

3 220
=1

[( ( )) ( , ) [ ( , )]]( ) ,
N

jB x yN N
N N j N N

j

i
Ae A x y n G y x dy

Bξ
ξ

λ ξ
− ∞ − +−

′ ′ ′− + + ∂ ⋅∑∫ F M F

 and then 1/2
3 3( ) = ( )( , )T h h hλ λ λT . Moreover, Lemma 4.7 yields (4.26) for = 3j , because 
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1/2

3 2,2 , 3 2,2 , 3 2,2 ,2 20 0 0( ) ( ), ( , ) ( ), ( , ) ( ).ji
n M n M n M

B Bσ λ σ λ σ λ
ξλλ λ ξ λ ξ

µ− − −′ ′∈ Λ ∈ Λ ∈ Λ

This completes the proof of Lemma 4.8.

Continuation of proof of theorem 4.3. Let 1 ˆ( ) = [ ( , )]( )j j Nv x v x xξ ξ−
′ ′ ′F , and then by (4.19) and (4.23)

we have  
1

1 2 2

=1

ˆ ˆ= [ ( )(2 ( ,0) ( ) ( ,0))]( )
( , )

N

N N N
Av x B i h A B h x

D A Bξ ξ ξ ξ
µ

−
−
′ ′ ′ ′− +∑

 



F M

 1
1

=1

ˆ ˆ[ (( ) ( ,0) ( ) ( ,0))]( );
( , )

Bx NN

N
Ae iB A h A B h x
D A B Aξ

ξ ξ ξ
µ

− −
−
′ ′ ′ ′+ − + +∑ 





F

 1/2
1 1/2 1

2 3 3
ˆ ˆ= [ ( ,0)]( ) [ ( ,0)]( )Bx BxN N

k k k
Av e h x Ae h x

B Bξ ξ
λ λ ξ ξ
µ µ

− −− −
′ ′′ ′ ′ ′+F F

 
1

1 2 2

=1

1 ˆ ˆ[ ( ) (2 ( ,0) ( ) ( ,0))]( )
( , )

N
k

N N
iA x B i h A B h x
A D A Bξ
ξ ξ ξ ξ

µ

−
−
′ ′ ′ ′− − +∑

 



F M

 
1

1

=1

1 ˆ ˆ[ ((3 ) ( ,0) ( ) ( ,0))]( ),
( , )

N
Bx kN

N
iAe B A i h B B A h x
A D A B Bξ
ξ ξ ξ ξ

µ

−
−−

′ ′ ′ ′+ − − −∑
 



F

for = 1, , 1k N −

, where we have used the formula 
2

2 3 3
1 = A
B B B

λ
µ µ µ

+  to treat the first term of ˆ jv  in (4.23). Since 

 
2 2 2 2

1,2 , 0, , , ( ),
( , ) ( , ) ( , ) ( , )

k ki iBi A B Bi A B M
D A B D A B A D A B A D A B ε λ

ξ ξξ ξ
µ µ µ µ −

+ +
∈ Σ 

 
2,2 ,3 0

(3 ) ( ), , , , ( ),
( , ) ( , ) ( , ) ( , )

k ki iB A i A B A B A i B B A M
D A B A D A B A D A B B A D A B BB ε λ

ξ ξξ ξ
µ µ µ µµ −

− + − −
∈ Σ 

 and 
1/2

2,1 ,2 3 0( )M
B ε λ

λ
µ −∈ Σ , by Lemma 4.8 we have Theorem 4.3. We next consider the equations: 

 

 

N

N
0 0

N
0 0 0

D ( ( ) ) = 0, d = 0 in ,

= on ,

( ( ) ) ( ) = 0 on .

w iv D w qI ivw

h A h w n d

D w qI n h n
σ

λ µ

λ

µ δ

+ − −
 ′+ ⋅∇ − ⋅
 ′− − ∆







 (4.27)

We shall prove the following theorem.

Theorem 4.9: Let 1 < <q ∞  and (0, / 2)ε π∈ . Then, there exist a 1 > 0λ  and solution operators ( )λW  and ( )σ λH  with 

 2 2 2 3
, ,1 1( ) H ( , ( ( ), ( ) )), ( ) H ( , ( ( ), ( ))),N N N N N

q q q qol H H ol H Hσ λ σ σ λλ λ+ + + +∈ Λ ∈ Λ   W L H L

such that for any , 1= i σ λλ γ τ+ ∈Λ  and 2 ( )N
qd H +∈  , = ( )w dλW  and = ( )h dσ λH  are unique solutions of Eq. (4.27) with 

some 1ˆ ( )qH∈ Ωq , and 
/2

2 2 , 11( ( ), ( ) )
({( ) ( ( )) | }) ( ),k

N k N N bH Hq q
rτ σ λτ λ λ λ λ−

+ +
∂ ∈Λ ≤

 L
R W

2 3 , 11( ( ), ( ))
({( ) ( ( )) | }) ( )m

N m N bH Hq q
rτ σ σ λτ λ λ λ λ−

+ +
∂ ∈Λ ≤

 L
R H

for = 0,1

, = 0,1,2k , and = 0,1m , where 1( )br λ  is a constant depending on 0m , 1m , 2m , ε , 1λ , N , and q . 

Proof: We start with solution formulas. Applying the partial Fourier transform to Eq. (4.27), we have the following generalized 
resolvent problem:

2 2ˆ ˆ ˆ| | = 0 ( > 0),j j N j j Nw w w i xλ µ ξ µ ξ′+ − ∂ + q

2 2ˆ ˆ ˆ| | = 0 ( > 0),N N N N N Nw w w xλ µ ξ µ′+ − ∂ + ∂ q
1

=1
ˆ ˆ = 0 ( > 0),

N

j j N N N
j

i w w xξ
−

+ ∂∑

2
N

ˆˆ ˆ ˆ( (0) (0)) = 0, 2 = for x =0,N j j N N Nw i w w A hµ ξ µ σ∂ + ∂ −q

 
                                      

1

N
=1

ˆ ˆ ˆˆ = for x =0.
N

j j N
j

h i A h w dσλ ξ
−

+ +∑                                                  (4.28)
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Where, we have set 1 1= ( , , )NA A Aσ σ σ − . Using the solution formulas given in (4.19) and (4.23) with = 0jg  ( = 1, , 1)j N − , 
and 2 ˆ=Ng A hσ , we have

 

 

2 2 2 2

2 2 2 3

2 2 2

( ) ˆ ˆˆ = ( ) ( ) ,
( , ) ( , )

( ) ˆ ˆˆ = ( ) ( ) ,
( , ) ( , )

( ) ( ) ˆ=
( , )

BxN
j N j

j

BxN
N

N

AxN

i x i e
w A A B h A B A h

D A B D A B

A x ew A A B h A A B h
D A B D A B

A B A A B e h
D A B

ξ ξ
σ σ

µ µ

σ σ
µ µ

−

−

−

+ − −

− + + +

+ +
−

M

M

q

 (4.29)

 Inserting the formula of =0ˆ |N xNw  into the last equation in (4.28), we have 

 
3( )ˆ ˆ ˆ( ) = ,

( , )
A A Bi A h h d
D A Bσ

σλ ξ
µ

+′+ ⋅ +

where we have set 1
=1= N

j jji A i Aσ σξ ξ−′ ⋅ ∑ , which implies that 

 ( , )ˆ ˆ= D A Bh d
Eσ

µ  (4.30)

with 3= ( ) ( , ) ( )E i A D A B A A Bσ σµ λ ξ σ′+ ⋅ + + . Thus, we have the following solution formulas: 

 

 

2 2 2 2

2 2 2 3

2 2 2

( ) ( )ˆ ˆˆ = ( ) ,

( ) ( )ˆ ˆˆ = ( ) ,

( ) ( ) ˆˆ = .

BxN
j j N j

BxN
N N

AxN

A A B A B Aw i x d i e d
E E

A A B A A Bw A x d e d
E E

A B A A B eq d
E

σ σ

σ σ

σ

σ σξ ξ

σ σ

µ

−

−

−

+ −
−

+ +
− +

+ +
−

M

M  (4.31)

Concerning the estimation for Eσ , we have the following lemma.

Lemma 4.10:
(1) Let 0 < < / 2ε π  and let 0E  be the function defined in (4.30) with 0 = 0A . Then, there exists a 1 > 0λ  and > 0c  such 

that the estimate:

 
1/2 3

0| | (| | )(| | )E c A Aλ λ≥ + +  (4.32)

      holds for 1
, 1( , ) ( \ {0})N

ε λλ ξ −′ ∈Σ ×  . 

(2) Let (0,1)σ ∈  and let Eσ  be the function defined in (4.30). Then, there exists a 1 > 0λ  and > 0c  such that 

 1/2 3| | (| | )(| | )E c A Aσ λ λ≥ + +  (4.33)

      holds for 1
, 1( , ) ( \ {0})NC λλ ξ −

+′ ∈ ×  .

Where, the constant c  in 1 and 2 depends on 1λ , 0m , 1m , and 2m . 

Proof : We first study the case where 1| | R Aλ ≥  for large 1 > 0R . Since 1/2 1/2| | | |B A µ λ−≤ +  and since , 1σ λ εΛ ⊂ Σ , by 
Lemma 4.4 we have

3 1 1/2| | | || ( , ) | | || || ( , ) | ( | | )E D A B A A D A B A Aσ σµ λ µ σ µ λ−≥ − − +
1/2 3 1 1/2 3 1/2 1/2 1/2 3

2 1| | (| | ) | | (| | ) | | (| | )c A m CR A Aµ λ λ µ λ λ µ σ λ λ− −≥ + − + − +
1/2 3 1 1/2 1/2 3

2 1( / 2) | | (| | ) (( / 2) / ( | |) ) | | (| | ) .c A c m CR Aµ λ λ µ µ σ µ λ λ λ−≥ + + − − +

Thus, choosing 1 > 0R  and 1 > 0λ  so large that 1
2 1( / 4) 0c m CRµ µ −− ≥  and 1/2

1( / 4) / ( ) 0cµ σ µλ− ≥ , we have 

 1/2 3 1/2 3
1| | ( / 2) | | (| | ) ( / 4)(| | )(| | )E c A c R A Aσ µ λ λ µ λ λ≥ + ≥ + +  (4.34)

provided that 1| | R Aλ ≥  and , 1σ λλ ∈Λ . When = 0σ , we may assume that 2 = 0m  above.

We now consider the case where 1| | R Aλ ≤ . We first consider the case of = 0σ . We assume that , 1ε λλ ∈Σ . In this case, 
we have 1 1/2 1/2

1 1| |A R λ λ−≥ , and so, setting 1 1/2
2 1 1=R R λ−  and choosing 2R  large enough, we have 1

2= (1 ( ))B A O R−+ . In 
particular, 3 1

2( , ) = 4 (1 ( ))D A B A O R−+ . Thus, we have 

 3 1 4 1
0 2 2= 4 (1 ( )) 2 (1 ( )).E A O R A O Rµλ σ− −+ + +
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Using Lemma 3.2, we have 
3 4 3 1 4 1

0 2 2| | | 4 2 | 4 | | ( ) 2 ( )E A A A O R A O Rµλ σ µ λ σ− −≥ + − −
3 4 1 3 4

2(sin )(4 | | 2 ) ( )(4 | | 2 ).A A O R A Aε µ λ σ µ λ σ−≥ + − +

 Thus, choosing 2 > 0R  so large that 1
2(sin / 2) ( ) 0O Rε −− ≥ , we have 

3 4 3 1/2 3
0 2| | (sin / 2)(4 | | 2 ) (| ) ( / 2)(| | )( | | ) .E A A c A A c A A Rε µ λ σ λ λ λ≥ + ≥ + ≥ + +

This completes the proof of 1.

We next consider the case of (0,1)σ ∈ . We assume that 1| | R Aλ ≤  and , 1C λλ +∈ . In this case, we have 1 1/2 1/2
1 1| |A R λ λ−≥ , and 

so, setting 1 1/2
2 1 1=R R λ−  and choosing 2R  large enough, we have 1

2= (1 ( ))B A O R−+ . In particular, 3 1
2( , ) = 4 (1 ( ))D A B A O R−+

. Thus, we have 
3 1 4 1

2 2= 4 (R (I )) (1 ( )) 2 (1 ( )),E e i m A A O R A O Rσ σµ λ λ ξ σ− −′+ + ⋅ + + +

and so, taking the real part gives 
3 1 1 3 4 1

2 2 2R = 4 (R ) (1 ( )) ( )(I ) 2 (1 ( )).eE e A O R O R m A A A O Rσ σµ λ λ ξ σ− − −′+ + + ⋅ + +

Since 1R > 0eλ λ≥  and 1| | R Aλ ≤ , we have 
4 1 4

2 1 2R 2 (4 ( ) 2 ) ( ) ,eE A m R O R Aσ σ µ σ −≥ − + +

and so, choosing 2 > 0R  so large that 1
2 1 2(4 ( ) 2 ) ( ) 0m R O Rσ µ σ −− + + ≥ , we have 

4 4 1 1/2 3
1 2| | R ( / 2 )( | |)( | | ) .E eE A A R A Rσ σ σ σ λ λ−≥ ≥ ≥ + +

This completes the proof of Lemma 4.10.

Continuation of proof of theorem 4.9: Let 1 ˆ= [ ]j jw wξ
−
′F , 1= [ ]q qξ

−
′F  and 1 ˆ= ( ) [ ]AxN

Nx e hξη ϕ −−
′F , where 0 ( )Cϕ ∞∈ 

 equals 

to 1  for ( 1,1)Nx ∈ −  and 0  for [ 2,2]Nx ∈ −/ . Notice that =0| =xN hη .

Let 1 ˆ( ) = [ ( , )]( )j j Nw x w x xξ ξ−
′ ′ ′F . In view of (4.31) and Volevich’s trick, we define ( )j λW  by 

 2 2
( )1 2

0

( )( ) = [ ( ( )) [ ]( , )jB x yN N
j N N N

i A Bd Ae A x y d y
A Eξ

σ

ξ σλ ξ
∞ − +−

′
+ ′ ′− + + ∆∫W F M F

 
( ) ( ) '[ ]( , )]( )jB x yN N

N N
i B B AAe d y x dy
A Eσ

ξ σ ξ− + − ′ ′ ′+ ∆F

 
2 2

1 2
0

( )[ ( ) '[ ]( , )N N j N N
A BA x y d y

Eξ
σ

σ ξ
∞ −

′
+ ′+ − + ∂ ∂∫ F M F

 
( ) ( ) '[ ]( , )]( ) ,B x yN N

j N N N
A B AAe d y x dy

Eσ

σ ξ− + − ′ ′+ ∂ ∂F

where we have used 2 ˆ'[ ]( , ) = ( , )N Nd y A d yξ ξ′ ′ ′∆ −F . We have ( ) =j jd wλW . By Lemma 4.10, we see that 

 
2 2 2 2 ( ) ( ), , ,j jA B A B A B A B B A
E E A E E Aσ σ σ σ

ξ ξ+ + − −

belong to 2,2 , 1( )M σ λ− Λ , and so by Lemma 4.7, we have

 /2
2 2 , 11( ( ), ( ))

({( ) ( ( )) | }) ( )k
N k N j bH R H Rq q

rτ σ λτ λ λ λ λ−
+ +

∂ ∈Λ ≤

L
R W

for = 0,1

 and = 0,1,2k , where 1( )br λ  is a constant depending on 0m , 1m , 2m  and 1λ .

Analogously, ( )N λW  can be constructed. Thus, our final task is to construct ( )σ λH . In view of (4.30), we define ( )σ λH  

acting on 2 ( )N
qd H R+∈  by 

 1 ( , ) ˆ( ) = ( ) [ ( ,0)]( ).AxN
N

D A Bd x e d x
Eσ ξ
σ

µλ φ ξ−−
′ ′ ′H F

Since ( )Nxϕ  equals one for ( 1,1)Nx ∈ − , we have =0( ) | =xNd hσ λH . Recalling the definition of ĥ  given in (4.30) and using 

Volevich’s trick, we have 2( ) = ( ){ ( ) ( ) }Nd x d dσ σ σλ φ λ λΩ +H H  with 

 ( )1
0

( , ) ˆ( ) = [ ( ) ( , )]( ) ,A x yN N
N N N

D A Bd Ae y d y x dy
Eσ ξ
σ

µλ ϕ ξ
∞ − +−

′ ′ ′Ω ∫ F
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( )2 1

0

( , ) ˆ( ) = [ ( ( ) ( , ))]( ) .A x yN N
N N N N

D A Bd e y d y x dy
Eσ ξ
σ

µλ ϕ ξ
∞ − +−

′ ′ ′− ∂∫H F

We use the following lemma.

Lemma 4.11: Let Λ  be a domain in C  and let 1 < <q ∞ . Let ϕ  and ψ  be two 0 (( 2,2))C∞ −  functions. Given 0,2 ( )m M∈ Λ , 

we define operators 6 ( )L λ  and 7 ( )L λ  acting on ( )N
qg L +∈   by 

( )1
6 0

ˆ[ ( ) ]( ) = ( ) [ ( , ) ( , ) ( )] ,A x yN N
N N N NL g x x e m g y y dyξλ ϕ λ ξ ξ ψ

∞ − +−
′ ′ ′∫ F

( )1
0

ˆ( ) = ( ) [ ( , ) ( , ) ( )] .A x yN N
N N N Nx x Ae m g y y dyξϕ λ ξ ξ ψ

∞ − +−
′ ′ ′∫ F

Then, 

 
( ( )

({( ) ( ) | })N k bLq
L rττ λ λ

+
∂ ∈Λ ≤

L
R  (4.35)

for = 0,1

 and = 6,7k , where br  is a constant depending on ( , )M m Λ . Here, ( , )M m Λ  is the number defined in definition 
4.5.

Proof : Using Lemma 5.4 in Shibata et al.,42 we can show (4.35) immediately for = 7k , and so we show (4.35) only in the 
case that = 6k  below. In view of Definition 1.2, for any n N∈ , we take =1{ }n

j jλ ⊂ Λ , =1{ } ( )n N
j j qg L +⊂  , and   

 are Rademacher functions. For the notational simplicity, we set 

 
1 1/

6 6 60
=1 =1((0,1), ( )) ( )

||| ( ) |||= ( ) ( ) = ( ( ) ( ) ) .
q

n n
q

j j j j j j
N Nj jL L Lq q q

L g r u L g r u L g duλ λ λ
+

∑ ∑∫
 

By the Fubini-Tonelli theorem, we have 
1

6 610 0
=1

||| ( ) ||| = | ( ) ( ) |
n

q q
j j j NN

j
L g r u L g dy dx duλ λ

∞
− ′∑∫ ∫ ∫



 
1

60 0
1=1 ( )

= ( ( ) ( ) ) .
q

n

j j j N
Nj Lq

r u L g du dxλ
∞

−
∑∫ ∫



Since 

 ( ) | |
0| ( ( , )) | | |A x yN Ne m Cα α

ξ αλ ξ ξ′ ′− + −
′ ′′ ′∂ ≤

for any 0Nx ≥ , 0Ny ≥ , 1( , ) ( \ {0})Nλ ξ −′ ∈Λ×  , and 1Nα −′∈ , by Theorem 3.1 we have 

 

 

1 ( )1
0

=1 1( )

1
, 0

1=1 ( )

ˆ( ) [ ( , ) ( , )]( )

( , ) ( ) ( , ) .

q
n

A x yN N
j j j N

j NLq

q
n

N q j j N
Nj Lq

r u e m g y y du

C M m r u g y du

ξ λ ξ ξ− +−
′

−

−

′ ′ ′

≤ Λ ⋅

∑∫

∑∫





F

 (4.36)

 For any 0Nx ≥ , by Minkowski’s integral inequality, Lemma 3.3, and Hölder’s inequality, we have 

 1/

1
60

1=1 ( )

( ) ( )

q
q

n

j j j
Nj Lq

r u L g duλ
−

 
 
  
 

∑∫
 

1/

1 ( )1
0 0

=1 1( )

ˆ=| ( ) | ( ) ( , ) ( , ) ( ) ( ) )

q
q

n
A x yN N

N j j j N N N
j NLq

x r u e m g y y y dy duξφ λ ξ ξ ψ
∞ − +−

′
−

   ′ ′ ′      
∑∫ ∫



F

 
1 ( )1 1/
0 0

1=1 ( )

ˆ| ( ) | [ ( ) ( , ) ( , )]( ) ( ) ) )
n

A x y q qN N
N j j j N N N

Nj Lq

x r u e m g y y y dy duξϕ λ ξ ξ ψ
∞ − +−

′
−

′ ′ ′≤ ∑∫ ∫


F

 
1 ( )1 1/

0 0
1=1 ( )

ˆ| ( ) | ( [ ( ) ( , ) ( , )]( ) ) | ( ) |
q

n
A x y qN N

N j j j N N N
Nj Lq

x r u e m g y y du y dyξϕ λ ξ ξ ψ
∞ − +−

′
−

′ ′ ′≤ ∑∫ ∫


F

( )( = 1, , )jr u j n
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1 1/

, 0 0
1=1 ( )

( , ) | ( ) | ( ( ) ( , ) ) | ( ) |
q

n
q

N q N j j N N N
Nj Lq

C M m x r u g y du y dyϕ ψ
∞

−

≤ Λ ⋅∑∫ ∫


 1 1/ 1/
, 0 0 0

1=1 ( )

( , ) | ( ) | ( ( ) ( , ) ) ( | ( ) | )
q

n
q q q

N q N j j N N N N
Nj Lq

C M m x r u g y dudy y dyϕ ψ
∞ ∞ ′ ′

−

≤ Λ ⋅∑∫ ∫ ∫


1 1/ 1/
, 0 0

=1 ( )

= ( , ) | ( ) | ( ( ) ( , ) ) ( | ( ) | )
q

n
q q q

n q N j j N N N
Nj Lq

C M m x r u g y du y dyφ ψ
∞ ′ ′

+

Λ ⋅∑∫ ∫


Putting these inequalities together and using Hölder’s inequality gives

 
1

60
=1 ( )

( ) ( )
q

n

j j j
Nj Lq

r u L g duλ
+

∑∫
 

1 /
, 0 0 0

=1 ( )

( ( , )) | ( ) | ( ) ( | ( ) | ) ,
q

n
q q q q q

n q N N j j N N
Nj Lq

C M m x dx r u g du y dyϕ ψ
∞ ∞ ′ ′

+

≤ Λ ∑∫ ∫ ∫


and so, we have 

 6 , ( ) ( )
=1 =1((0,1), ( )) ((0,1), ( ))

( ) ( , ) .
n n

j j j n q j jL L Rq q
N Nj jL L L Lq q q q

r L g C M m r gλ ϕ ψ
′

+ +

≤ Λ∑ ∑


 

This shows Lemma 4.11.

Continuation of proof of theorem 4.9: For 1
0 0 0( , , ) Nj k N N Nα −′ ∈ × ×  with | | 3j kα′+ + ≤  and = 0,1j , we write 

 2

=0
( ) = ( ( ))[ ( ) ( ) ],

k
j k k n j n j n

x N n N N x N x N
n k

d C x d dα α α
σ σ σλ λ ϕ λ λ λ λ′ ′ ′−

′ ′ ′∂ ∂ ∂ ∂ ∂ Ω + ∂ ∂∑H H

and then 

( )j n
x N dα

σλ λ′
′∂ ∂ Ω

( )1
20

( ) ( ) ( , )= [ ( ) '[(1 ) ]( , )]( ) ;
(1 )

j n
A x yN N

N N N
i A D A BAe y d y x dy

A E

α

ξ
σ

µλ ξ ϕ ξ
′∞ +−

′
′ − ′ ′ ′− ∆
+∫ F F

 
( )2 1

0

( , ) ˆ( ) = [ ( ( ) ( , ))]( ) ;
j

A x yj N N
N N N N

D A Bd e y d y x dy
Eσ ξ
σ

µλλ λ ϕ ξ
∞ − +−

′ ′ ′∂∫H F

 
2 ( )j n

x N dα
σλ λ′

′∂ ∂ H

 
( )1

20

( ) ( ) ( , ) ˆ= [ ( ( ) ( , ))]( )
(1 )

j n
A x yN N

N N N N
i A D A Be y d y x dy

A E

α

ξ
σ

µλ ξ ϕ ξ
′∞ +−

′
′ − ′ ′∂
+∫ F

 1
( )1

20
=1

( ) ( ) ( , )[ ( ( ) [ ( , )]( )}]( )
(1 )

j nN
jA x yN N

N N j N N
k

ii A D A BAe y d y x dy
AA E

α

ξ
σ

ξµλ ξ φ ξ
′− ∞ +−

′
′ − ′ ′− ∂ ∂ ⋅
+∑∫ F F

for | | 1nα′ + ≥ . Where, we have used the formula: 

 
2 1

2 2 2
=1

1 11 = =
1 1 1

N
j

j
j

iA A i
AA A A
ξ

ξ
−+

−
+ + +∑

in the third equality. By Lemma 4.4 and Lemma 4.10, we see that multipliers: 

 2 2 2
( ) ( , ) ( , ) ( ) ( , ) ( ) ( , ), , ,

(1 ) (1 ) (1 )

j n j j n j n
ji A D A B D A B i A D A B i A D A B

E AA E A E A E

α α α

σσ σ σ

ξλ ξ λ λ ξ λ ξ′ ′ ′′ ′ ′
+ + +

belong to 0,2 , 1( )M σ λΛ , because | | 3j nα′+ + ≤ and = 0,1j . Thus, using Lemma 4.7, we see that for any n∈ , =1 , 1{ }n
j j σ λλ ⊂ Λ , 

and 2
=1{ } ( )n N

j j qd H +⊂ 

, the inequality: 

2=1 =1((0,1), ( )) ((0,1), ( ))

( )( )( ) ( ) ( )
n n

k n j n i
N x N

N NL L L Hq q q q

r d C r dα
σφ λ λ′−

′

+

⋅ ∂ ∂ ∂ ≤ ⋅∑ ∑
     

 

 

H

 holds for = 1,2i , which leads to 

 
2=1 =1((0,1), ( )) ((0,1), ( ))

( )( ) ( ) ( ) .
n n

j k
x N

N NL L L Hq q q q

r d C r u dα
σλ λ′

′

+ +

⋅ ∂ ∂ ≤∑ ∑
     

 

 

H
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Here, C  is a constant depending on N , q , 0m , 1m , and 2m . This shows that 

 2 3 , 1( ( ), ( ))
({ ( ) | })k

N k N bH R H Rq q
rσ σ λλ λ λ−

+ +
∈Λ ≤

L
R H

for = 0,1k . Here, 1( )br λ  is a constant depending on N , q , 0m , 1m , and 2m , but independent of 0 1, [ , ]m mµ δ ∈  and 2| |A mσ ≤  
for [0,1)σ ∈ . Analogously, we have 

 2 3 , 11( ( ), ( ))
({ ( ( )) | }) ( )k

N k N bH R H Rq q
rτ σ σ λτ λ λ λ λ−

+ +
∂ ∈Λ ≤

L
R H

for = 0,1k . This completes the proof of Theorem 4.9.

Proof of theorem 4.1: Let ( , , ) ( )N
qf d h Y +∈ 

. Let 1 ( )N
qg H +∈ 

 be a solution of the variational equation: 

 1 N
q ,0( , ) ( , ) = ( , ) for any H ( ),N N Ng g fλ ϕ ϕ φ ϕ ′ +

+ + +
+ ∇ ∇ − ∇ ∈

  


 (4.37)

 subject to =g ρ  on Γ . Let u , q  and h  be solutions of the equations: 

 

 

N

N
0 0

N
0 0

D ( ( ) I) = , d = = d g in ,

= on ,

( ( ) ( ) ) = on .

u iv D u f ivu g iv

h A h u n d

D u I h I n h
σ

λ µ

λ

µ δ

+

Γ

 − −
 + ⋅∇ − ⋅
 ′− − ∆







q

q

 (4.38)

Where, g  is a solution of Eq. (4.37) with 0= h nρ ⋅  and 1= ( )g f gλ− + ∇ . Then, according to what pointed out in Subsec. 
2.1, u  and h  are solutions of Eq. (4.3). Thus, we shall look for u , q  and h  below.

We first consider the equation: 

 Nd v = in .iv g +  (4.39)

We have the following lemma. 

Lemma 4.12: Let 1 < <q ∞ , 0 < < / 2ε π , and 0 > 0λ . Let 
1( ) = {( , ) | ( ) , ( )},N N N N

q q qY f f L Hρ ρ+ + +′′ ∈ ∈  

1
1 1 2 1 1 2' ( ) = {( , , ) | ( ) , ( ), ( )}.N N N N N

q q q qF G G F L G L G H+ + + +′ ∈ ∈ ∈   Y

Let g  be a solution of the variational problem (4.37). Then, there exists an operator family 
2

0 , 0( ) H ( , ( ' ( ), ( ) ))N N N
q qol Hε λλ + +′∈ Σ  B L Y  such that for any λ ∈Σ  and ( , ) ( )N

qf Yρ +′′∈ 

, problem (4.39) admits a solution 
1/2

0= ( )( , , )v fλ λ ρ ρB , and 
/2

2 0 , 00( ' ( ), ( ) )
({( ) ( ( )) | }) ( )j

j bN N NHq q
rτ ε λτ λ λ λ λ−′ + +

∂ ∈Σ ≤

 L Y
R B

for = 0,1  and = 0,1,2j , where 0( )br λ  is a constant depending on ε , 0λ , N , and q . 

Proof: This lemma was proved in Shibata35 [Lemma 9.3.10], but for the sake of completeness of the paper as much as 
possible, we give a proof. Let 1g  be a solution of the equation:

 N
1 1 =0( ) = d in , | = 0,xNg iv f gλ +− ∆ 

and let 2g  be a solution of the equation: 

 N
2 2 =0( ) = 0 in , | = .xNg gλ ρ+− ∆ 

And then, 1 2=g g g+  is a solution of Eq. (4.37). To construct 1g  and 2g , we introduce the even extension, ef , and odd 
extension, of , of a function, f , defined on N

+ , which are defined by 

 
( , ) > 0, ( , ) > 0,

( ) = ( ) =
( , ) < 0, ( , ) < 0,

N N N Ne o

N N N N

f x x x f x x x
f x f x

f x x x f x x x
′ ′ 

 ′ ′− − − 
 (4.40)

where 1
1 1= ( , , ) N

Nx x x −
−′ ∈ 

 and = ( , ) N
Nx x x′ ∈ . Let 1= ( , , )Nf f f Τ


. Notice that 1

=1(d ) = No o e
j j N Njiv f f f− ∂ + ∂∑ . We 

define 1g  by letting 

 

  

1

1 1 =1
1 2 2

[ ]( ) [ ]( )
[(d f ) ]( )= [ ] = [ ].

| | | |

N
o e

k k N No
k

i f i f
ivg ξ ξ

ξ ξ ξ ξ
ξ

λ ξ λ ξ

−

− −
+

+ +

∑ F F
FF F

And also, the 2g  is defined by 

 1 0
2 ˆ( ) = [ ( ,0)]( ) = ,B xN

N

hg x e x
xξ ρ ξ−−

′
∂′ ′
∂

F
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where we have set 2
0 = | |B λ ξ′+  and 1 1 0

0 ˆ( ) = [ ( ,0)]( )B xNh x B e xξ ρ ξ−− −
′ ′ ′−F . Let 1v  be an N  vector of functions defined by 

 1

1 1 =11
1 2 2 2

( [ ]( ) [ ]( ))
[ ]( )= [ ] = [ ].

| | ( | | ) | |

N
o e

k k N N
k

f f
i gv ξ ξ

ξ ξ ξ ξ ξ
ξ ξ

ξ λ ξ ξ

−

− −
+

− −
+

∑ F F
FF F

We see that 1 1d v =iv g  in N
+ . Moreover, by Lemma 3.2 and Lemma 3.3, there exists an operator family 

1 2
0 ( ) H ( , ( ( ), ( ) ))N N N

q qol L R Hελ + +∈ Σ B L  such that 1
1 0= ( )v fλB  and 

 /2 1
2 0 , 00( ( ) , ( ) )

({( ) ( ( )) | }) ( )j
j bN N N NL Hq q

rτ ε λτ λ λ λ λ−
+ +

∂ ∈Σ ≤

 L
R B

for = 0,1 , = 0,1,2j , and 0 > 0λ , where 0( )br λ  is a constant depending on ε , 0λ , N  and q .

Let 

 21 1
2 2 2

[ ]( ) [ ]( )
= [ ] = [ ],

| | | |

e o
j N j

j
h i g

v ξ ξ
ξ ξ ξ ξ ξ

ξ ξ
− −−

F F
F F

and let 2 21 2= ( , , )Nv v v Τ


, and then we have 2 2d v = = Niv g h∂  in N
+ . Since 

21
2 2

[ ]( )
= [ ]( = 1, , );

| |

o
j

j
g

v j Nξ
ξξ ξ

ξ
−∇ 

F
F

 
2 1 2

2 2
[( ) ]( )= [ ]( = 1, , 1);
| |

o
k

k
gv k Nξ

ξ ξ ξ
ξ

− ⊗ ∂
∇ −

FF

1 2
2 2

[( ) ]( )= [ ] ( = 1, , 1);
| |

o
N k

k N
gv k Nξ

ξξ ξ
ξ

− ∂
∂ ∇ −

FF

 2 2
2 1 2 1

2 2 2= [ [ ]] = [ [ ]( )],
| | | |

e e eN N
N N Nv h h hξ ξ

ξ ξ λ ξ
ξ ξ

− − ′∂ ∂ − ∆F F F F

 
we have 

 1/2 1/2
2 2( ) ( ) ( ) ( )

, ,N N NL Lq q L L HSq q
v C h v C hλ λ λ λ

+
≤ ∇ ≤

 



 2 2
2 ( )( ) ( )

( ).NN N LqL Lq q
v C h hλ

++
∇ ≤ ∇ +



 

Thus, by Lemma 4.6 and Lemma 4.7, we see that there exists an operator family 1
0 ( )λB  with 

 1 2
0 ( ) H ( , ( ( ), ( ) ))N N N

q qol Hελ + +∈ Σ  B B Z

such that 2 1/2
2 0= ( )( , )v λ λ ρ ρB  and 

 /2 2
2 0 , 00( ( ), ( ) )

({( ) ( ( )) | }) ( )j
j bN N NR H Rq q

rτ ε λτ λ λ λ λ−
+ +

∂ ∈Σ ≤

L Z
R B

for = 0,1 , = 0,1,2j , and 0 > 0λ , where 0( )br λ  is a constant depending on ε , 0λ , N , and q , and ( )N
q +Z  is the same 

space as in Lemma 4.8. Since 1 2=v v v+  is a solution of Eq. (4.39), setting 1 2
0 1 1 2 0 1 0 1 2( )( , , ) = ( ) ( )( , )F G G F G Gλ λ λ+B B B , we 

see that 0 ( )λB  is the required operator, which completes the proof of Lemma 4.12. Let 1/2
0 0 0 0= ( )( , , )u f n h n hλ λ ⋅ ⋅B , and 

let 0 0=u u w+ . We then look for 0w , q , and h  satisfying the equations: 

 

 

N
0 0 0 0

N
1 0 0 0

N
0 0 0 0 0

D ( D( ) I) = f f , d = 0 in ,

n = on ,

( D( ) I) ( )n = h-h on ,

w iv w q ivw

h A h U d d

w n h
σ

λ µ

λ

µ δ

+ − − −
 ′+ ⋅∇ − ⋅ +
 ′− − ∆





q

 (4.41)

where we have set 

 0 0 0 0 0 0 0 0= D ( D( )), = , = D( ).f u iv u d u n h uλ µ µ− ⋅

We consider the equations: 

 
N

1 1 1 1
N

1 0 1 0

U D ( D(U ) I) = F, d U = 0 in ,

(U ) = 0, = 0 on .N

iv P iv

n

λ µ + − −

∂ ⋅



p
 (4.42)

 For 1= ( , , ) ( )N N
N qF F F LΤ

+∈ 

, let 1 1= ( , , , )e e o
N NF F F F Τ
−

. Let 1( )λB  and 1( )λP  be operators acting on ( )N N
qF L +∈ 

 defined 
by 
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2

1 1
1 12 2

[ ]( ) [ ]( ) | | [ ]( )( )F = [ ], ( )F = [ ].
| | | |

F F F
ξ ξ

ξ ξξ ξ ξ ξ ξλ λ
λ µ ξ ξ

−
− −− ⋅ ⋅

+
F F FB F P F

As was seen in Shibata et al.,40 [40, p.587] or Shibata et al.41 [41, Proof of Theorem 4.3], 1 1= ( )U FλB  and 1 1= ( )FP λP  satisfy 
Eq. (4.42). Moreover, employing the same argument as in Sect. ??, by Lemma 3.2 and Lemma 3.3, we see that 

 2 1
1 , 1 ,0 0

ˆ( ) H ( , ( ( ) , ( ) )), ( ) H ( , ( ( ) , ( )))N N N N N N N
q q q qol L H R ol L Hε λ ε λλ λ+ + + +∈ Σ ∈ Σ  B L P L

for any (0, / 2)ε π∈  and 0 > 0λ , and moreover 
/2

2 1 , 0( ( ) , ( ) )
({( ) ( ( )) | })j

j bN N N NL Hq q
rτ ε λτ λ λ λ−

+ +
∂ ∈Σ ≤

 L
R B

 for = 0,1  and = 0,1,2j , where br  is a constant depending on ε , 0λ , 0m , and 1m . In particular, we set 

 1 1 1 1= ( )( ), = ( )( ).u f f q f fλ λ− −B P  (4.43)

 We now let 0 1 2=u u u U+ +  and 1 2= P+q q , and then 

 

 

N
2 2 2 2

N
2 0 2 0

N
2 2 0 0 2 0

U D ( D(U ) I) = 0, d U = 0 in ,

U = on ,

( D(U ) I) ( ) = on ,

iv P iv

h A h n d d

P n h n h h
σ

λ µ

λ

µ δ

+ − −
 ′+ ⋅∇ − ⋅ +
 ′− − ∆ −







 (4.44)

where we have set 

 2 0 0 1 2 0 1= ( ), = ( ).d n u u h D u uµ⋅ + +

Thus, for 1H ( )N N
qH +∈ 

 we consider the equations: 

 
N

2 2 2 2
N

2 2 0 0

U D ( D(U ) I) = 0, d U = 0 in ,

( D(U ) I) = H on ,

iv P iv

P n

λ µ

µ
+ − −


−





 (4.45)

and then by Theorem 4.3, we see that 1/2
2 = ( )( )U λ λ H,HV  is a unique solutions of Eq. (4.45) with some 1

2
ˆ ( ).N

qP H +∈ 

 In 
particular, we set 1/2

2 2 2= ( )( ( ),( ))u h h h hλ λ − −V .

We finally let 0 1 2 3=u u u u u+ + +  and 1 2 3= + +q q q q , and then 3u , 3q  and h  are solutions of the equations: 

 

 

N
3 3 3 3

N
3 0 3 0

N
3 3 0 0 0

D ( D( ) I) = 0, d u = 0 in ,

u n = on ,

( D( ) I) ( ) = 0 on ,

u iv u iv

h A h d d

u n h n
σ

λ µ

λ

µ δ

+ − −
 ′+ ⋅∇ − ⋅ +
 ′− − ∆







q

q

 (4.46)

where 3 0 0 1 2= n (u u u )d ⋅ + + . By Theorem 4.9, setting 1( ) = ( ( ), , ( ))Nλ λ λ Τ
W W W , we see that 3 3= ( )( )u d dλ +W  and 

3= ( )( )h d dσ λ +H  are unique solutions of Eq. (4.46) with some 1
3

ˆ ( )N
qH +∈ q . Since the composition of two R -bounded 

operators is also R  bounded as follows from Proposition 3.4, we see easily that given (0, / 2)ε π∈ , there exist 1 > 0λ  and 
operator families 0 ( )λA  and 0 ( )λH  satisfying (4.4) such that 1/2

0= ( )( , , , )u f d h hλ λA  and 1/2
0= ( )( , , h,h)h f dλ λH  are unique 

solutions of Eq. (4.3), and moreover the estimate (4.5) holds. This completes the proof of Theorem 4.1.

Problem in a bent half space
Let : N NR RΦ →  : = ( )x y x→ Φ  be a bijection of 1C  class and let 1−Φ  be its inverse map. We assume that ∇Φ  and 1−∇Φ  
have the forms: = ( )B x∇Φ +A  and 1

1 1= ( )B y−
− −∇Φ +A , where A  and 1−A  are N N×  orthogonal matrices with constant 

coefficients and ( )B x  and 1( )B y−  are matrices of functions in 2 ( )NC 
 such that

 
2

1 1 1 1 2( ) ( ) ( )
( , ) , ( , ) , ( , ) .N N K NL c L L
B B M B B C B B M− − −∞ ∞ ∞

≤ ∇ ≤ ∇ ≤




 (5.1)

 Here, KC  is a constant depending on constants K , α , β  appearing in Definition 1.1. We choose 1 > 0M  small enough 
and 2M  large enough eventually, and so we may assume that 1 20 < 1 KM C M≤ ≤ ≤ . Let = ( )N

+ +Ω Φ 
 and 0= ( )N

+Γ Φ 

. Let n+  be the unit outer normal to +Γ . Setting 1
1,1 1.= ( , , )N

− Τ
− −Φ Φ Φ

, we see that +Γ  is represented by , ( ) = 0N y−Φ , 
which yields that

 1, 1 1

2 1/21,

=1

( ) ( ) ( ( ), , ( ))( ) = =
(| ) ( ) | ( ( ( )) )

N N N NN NN
N

N
Nj Nj

j

x a b x a b xn x
x a b x

Τ
−

+
−

∇Φ Φ + +
− −

∇Φ Φ
+∑







 (5.2)
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 where ija  and ( )ijb x  denote the t( , ) hi j  element of 1−A  and 1( )( )B x− Φ . Obviously, n+  is defined on N


 and n+  denotes 
the unit outer normal to +Γ  for = ( ,0)y x +′Φ ∈Γ . By (5.1), writing

                                                         1= ( , , ) ( )N NNn a a b xΤ
+ +− +                                                                        

(5.3)

we see that b+  is an N -vector defined on N


, which satisfies the estimates: 

 2
1( ) ( ) 2( )
, , .N NN N K MNL L L

b C M b C C b C+ + +∞ ∞ ∞
≤ ∇ ≤ ∇ ≤

 



   (5.4)

We next give the Laplace-Beltrami operator on +Γ . Let

=1
( ) = ( ) ( ) = ( ( ))( ( )) = ( )

N

ij ik ik jk jk ij ij
ki j

g x x x a b x a b x g x
x x

δ+
∂Φ ∂Φ

⋅ + + +
∂ ∂ ∑ 

with 
=1= ( ( ) ( ) ( ) ( ))N

ij ik jk jk ik ik jkkg a b x a b x b x b x+ +∑ . Since +Γ  is given by = ( ,0)Ny x′Φ , letting ( )G x  be an N N×  matrix 
whose t( , ) hi j  element are ( )ijg x , we see that ( ,0)G x′  is the 1st fundamental matrix of +Γ . Let := detg G+  and let ( )ijg x+  
denote the t( , ) hi j  component of the inverse matrix, 1G− , of G . By (5.1), we can write

= 1 , ( ) = ( )ij ij
ijg g g x g xδ+ + + ++ + 

with

 
2

1 2( ) ( ) ( )
( , ) , ( , ) , ( , ) .ij ij ij

N N K MN N NL L L
g g C M g g C C g g C+ + + + + +

∞ ∞ ∞
≤ ∇ ≤ ∇ ≤

  

     
 (5.5)

The Laplace-Beltrami operator Γ+
∆  is given by 

 
1

, =1

1( )( ) = { ( ,0) ( ,0) ( ( ,0))} = ( ( ,0))
( ,0)

N
ij

i j i j
f y g x g x f x f x f

g x x x

−

Γ + + ++
+

∂ ∂′ ′ ′ ′ ′∆ Φ ∆ Φ +
′ ∂ ∂∑ D            (5.6)

for = ( ,0)y x +′Φ ∈Γ . Where, 

 
21 1

, =1 =1

( )( )( ) = ( ) ( ) ( ) for = (x)
N N

ij j

i j ji j j

f f xf y g x x g x y
x x x

− −

+
∂ ∂

+ Φ
∂ ∂ ∂∑ ∑D

with 

 
1

=1

1( ) = ( ( ) ( )).
( )

N
j ij

i i
g x g x g x

g x x

−

+
+

∂
∂∑

By (5.5) 

 3
1 21( ) ( )2( )

.N NN MNH Hq qLq
f C M f C f+ + ++

≤ ∇ +
 



D  (5.7)

We now formulate problem treated in this section. Let 0y  be any point of +Γ  and let 0d  be a positive number such that 

 
                          0 0 1 1 d 00

0 2 1 d 00

| ( ) ( ) |,| ( ) ( ) | , for any y B (y );

| ( ) ( ) | foranyy B (y ).

y x y y m M

A y A y m Mσ σ

µ µ δ δ +

+

− − ≤ ∈Ω ∩

− ≤ ∈Γ ∩
                                             (5.8)

In addition, µ , δ , and Aσ  satisfy the following conditions:

 0 1 1

2 1/2 3( )

( ), ( ) , | ( ) |,| ( ) | for any y ,

| ( ) | for any y , for any (0,1).b
qWr

m y y m y y m

A y m A mσ σ

µ δ µ δ

σ σ
+

−
−+ Ω+

≤ ≤ ∇ ∇ ≤ ∈Ω

≤ ∈Γ ≤ ∈
 (5.9)

In view of (1.2), (1.3) and (5.9), to have (5.8) for given 1 (0,1)M ∈  it suffices to choose 0 > 0d  in such a way that 0 1d M≤  and 
0 1
ad M≤ . We assume that < <N r ∞  and 0 = 0A  according to (1.3). Let ( )yϕ  be a function in 0 ( )NC∞


 which equals 1 for 

/2 00 ( )dy B y∈  and 0 in the outside of 00 ( )dB y . We assume that 1 2( )NH Mϕ
∞

∇ ≤


. Let 

0 00 0( ) = ( ) ( ) (1 ( )) ( ), ( ) = ( ) ( ) (1 ( )) ( ),y yy y y y y y y y y yµ ϕ µ ϕ µ δ ϕ δ ϕ δ+ − + −

, 00 ( ) = ( ) ( ) (1 ( )) ( ).yA y y A y y A yσ σ σϕ ϕ+ −

In the following, C  denotes generic constants depending on 0 1 2 3, , , , ,m m m m N ε , and ;q 2MC  denotes generic constants 
depending on 2 0 1 2 3, , , , , , .M m m m m N and qε

Given 2 ( )N
qv H +∈ Ω  and 3( )qh H +∈ Ω , let ( , )bK v h  is a unique solution of the weak Dirichlet problem: 

 1
q ,00

ˆ( ( , ), ) = (D ( ( )) d , ) for any H ( ),b yK v h iv D v ivvϕ µ ϕ ϕ ′Ω Ω ++ +
∇ ∇ −∇ ∇ ∈ Ω  (5.10)

subject to 0 0( , ) =< D(v)n ,n > db y yK v h h iv vµ δ+ + Γ+
− ∆ −  on +Γ . We then consider the following equations: 
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0

, 0

0 0

D ( D(v) (v, )I) = in ,

A = on ,

( D( ) ( , )I)n ( )n = on .

y b

y d

y b y b

v iv K h g

h h v n g

v K v h h g
σ

λ µ

λ

µ δ

+

Γ + ++

+ Γ + ++

 − − Ω
 + ⋅∇ − ⋅ Γ
 − − ∆ Γ

 (5.11)

The following theorem is a main result in this section.

Theorem 5.1: Let 1 < <q ∞  and 0 < < / 2ε π . Let σγ  be the number defined in Theorem 1.7. Then, there exist 1 (0,1)M ∈
, 0 1λ ≥  and operator families ( )b λA  and ( )b λH  with

 2 3
, ,0 0

( ) H ( , ( ( ), ( ) )), ( ) H ( , ( ( ), ( )))N
b q q b q qol H ol Hσ λ γ σ λ γσ σ
λ λ+ + + +∈ Λ Ω Ω ∈ Λ Ω Ω

 

A L Y H L Y

such that for any , 0
= i σ λ γσ

λ γ τ+ ∈Λ


 and ( , , ) ( )d b qg g g Y +∈ Ω , 

 1/2 1/2= ( )( , , , ), = ( )( , , , )b d b b b d b bu g g g g h g g g gλ λ λ λA H

are unique solutions of Eq. (5.11), and 

 

 

/2
2 , 0( ( ), ( ))

3 , 0( ( ), ( ) )

({( ) ( ( )) | }) ,

({( ) ( ( )) | }) ,

j
j b bHq q

k
k N b bHq q

r

r

τ σ λ γσ

τ σ λ γσ

τ λ λ λ

τ λ λ λ

−Ω Ω+ +

−Ω Ω+ +

∂ ∈Λ ≤

∂ ∈Λ ≤









L Y

L Y

R A

R H
 (5.12)

for = 0,1 , = 0,1,2j , and = 0,1k . Where, br  is a constant depeding on 0 1 2 3, , , , ,m m m m N qandε  but independent of 1M  
and 2M , and moreover, 0λ  is a constant depending on 2M .

Below, we shall prove Theorem 5.1. By the change of variables = ( )y xΦ , we transform Eq. (5.11) to a problem in the half-
space. We let 

 0 0= ( ), ( ) = ( ( )) ( ( )), ( ) = ( ( )) ( ( )), ( ) = ( ( )) ( ( )).y x x x x x x x A x x A xσ σµ φ µ δ φ δ φΦ Φ Φ Φ Φ Φ Φ 



Notice that 

0 0 0 00 0( ( )) = ( ) ( ) ( ), ( ( )) = ( ) ( ) ( ),y yx y x x x y x xµ µ µ µ δ δ δ δΦ + − Φ + − 

 

0 0( ( ,0)) = ( ) ( ) ( ).A x A y A x A xσ σ σ σ′Φ + − 

We may assume that 1m , 2m , 3 2m M≤ . Recalling that 1 2( )NH Mφ
∞

∇ ≤


, by (5.8) and (5.9) we have 

 

 
0 1 1 0 1 1 0 2 1

1 2( ) ( )

1 1/2 2( ) ( )0 0

| ( ) ( ) | , | ( ) ( ) | , | ( ) ( ) | ,

( , ) , ( , ) ,

,

MN NL R L R

b
q MN NL R W Rq

x x m M x x m M A x A x m M

m C

A m A C

σ σ

σ σ

µ µ δ δ

µ δ µ δ

σ
∞ ∞

−
−

∞

− ≤ − ≤ − ≤

≤ ∇ ≤

≤ ∇ ≤

   

 

 

 

 

 (5.13)

for (0,1)σ ∈ .

Since 1= ( )x y−Φ , we have

 =1
= ( ( ))

N

kj kj
kj k

a b x
y x
∂ ∂

+
∂ ∂∑  (5.14)

 where 1( )( ( )) = ( ( ))ij ijx a b x−∇Φ Φ + . Let 

 := det , = 1.g∇Φ −g g

By (5.1), 

 2
1( ) ( ) 2( )
, , .N NN N K MNL L L

C M C C C
∞ ∞ ∞

≤ ∇ ≤ ∇ ≤
 



g g g  (5.15)

By the change of variables: = ( )y xΦ , the weak Dirichlet problem: 

 1
q ,0

ˆ( , ) = ( , ) for any H ( ),u kϕ ϕ ϕ ′Ω Ω ++ +
∇ ∇ ∇ ∈ Ω

subject to =u k  on +Γ , is transformed to the following variational problem: 

 0 1 N
q ,0

ˆ( , ) ( , ) = ( , ) for any H ( ),N N Nv v hψ ψ ψ ψ ′ +
+ + +

∇ ∇ + ∇ ∇ ∇ ∈
  

B  (5.16)

subject to =v h , where 1 1= ( )h B k− −+ Φ Φ  Ag  and =h k Φ . Moreover, 0B  is an NN ×  matrix whose t( , ) hm  
component, 0

mB , is given by 

 0

=1
= ( ( ) ( ) ( )).

N

m m j mj mj j j mj
j

a b x a b x b b xδ + + +∑
    

B g g
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By (5.1), we have 

 0 0 2 0
1 2( ) ( ) ( )
, , .m N m N K m MN N NL L L

C M C C C
∞ ∞ ∞

≤ ∇ ≤ ∇ ≤
  

  

B B B  (5.17)

 

Lemma 5.2: Let 1 < <q ∞ . Then, there exist an 1 (0,1)M ∈  and an operator 1K  with 

 1 1
1 ,0

ˆ( ( ) , ( ) ( ))N N N N
q q qL H H+ + +∈ +  K L

such that for any ( )N N
qf L +∈ 

and 1 ( )N
qf H +∈ 

, 1= ( , )v f fK  is a unique solution of the variational problem: 

 0 1 N
q ,0

ˆ( , ) ( , ) = ( , ) forany H ( ),N N Nv v fψ ψ ψ ψ ′ +
+ + +

∇ ∇ + ∇ ∇ ∇ ∈
  

B  (5.18)

 subject to =v f  on 0
N


, which possesses the estimate: 

 1( ) ( ) ( )2 ( ).N N NML L Hq q q
v C f f

+ + +
∇ ≤ +

  

 (5.19)

 Proof: We know the unique existence theorem of the variational problem: 

 1 N
q ,0

ˆ( , ) = ( , ) forany H ( )N Nv fψ ψ ψ ′ +
+ +

∇ ∇ ∇ ∈
 



subject to =v f  on N
+ . Thus, choosing 1 > 0M  small enough in (5.17) and using the Banach fixed point theorem, we 

can easily prove the lemma. Using the change of the unknown functions: 1=u v− ΦA  as well as the change of variable: 
= ( )y xΦ , we will derive the problem in N

+  from (5.11). Noting that 1= Τ
−A A , by (5.14) we have 

 
, =1

( ) = ( ) :
N

d
ij ki j k ij

k
D v a a D u b u+ ∇∑

 



 (5.20)

 with 
, =1: = ( )Nd

ij kj i kkb u a b D u∇ ∑
 



. Setting 1( ) = ( , , )Nb x b b Τ
+ + +

 in (5.3), by (5.3) we have 

 1
0 0< ( ) , >=< ( ) , > :D v n n D u n n u+ + + ∇B  (5.21)

 where we have set 
1

, =1 , , , =1
: = 2 ( ) ( )

N N

ji i jN ki j i j k
i j i j k

u a b D u a a b b D u+ + +∇ − +∑ ∑
 



B

 

, =1
( : )( )( ).

N
d
ij Ni i Nj j

i j
b u a b a b+ ++ ∇ + +∑

By (5.1), we have 

 

1
1 ( )( )

1 2
111 ( )( ) ( )

: ,

: { }.

NNN LqLq

NN KN N HqH Lq q

u C M u

u C M u C u

++

++ +

∇ ≤ ∇

∇ ≤ ∇ +







 

B

B
 (5.22)

And also, 

 2 2

, =1 =1
d = d : with : = ( ) .

M N

kj j
k j k

uiv v ivu u u b a
x
∂

+ ∇ ∇
∂∑ ∑ 





B B  (5.23)

By (5.1), we have 

 

2
1 ( )( )

2 2
111 ( )( ) ( )

: ,

: { }.

NNN LqLq

NN KN N HqH Lq q

u C M u

u C M u C u

++

++ +

∇ ≤ ∇

∇ ≤ ∇ +







 

B

B
 (5.24)

By (5.20), we have 

 1
1 00D ( (v)) = D ( ( )D(u)) :yiv D iv y uµ µ− +A R  (5.25)

with 1 1 1
1: = ( : | , , : | )Nu u u Τ
R R R , and 

1
0

=1 , , =1
: | = {( ( ) ( )) ( )} ( ( ) : )

N N
d

s sk si kj ij
k i j kk k

u x x D u a a x b u
x x

µ µ µ∂ ∂
− + ∇

∂ ∂∑ ∑  R

 

, , , =1 , , =1
( ( )) ( : )

N N
d

j kj s si kj ij
j k m i j kk k

a b D u a b b u
x x

µ µ∂ ∂
+ + ∇

∂ ∂∑ ∑
 



 

By (5.1) and (5.13), 

 1 2
11 1 ( )2( ) ( )

: .NN MN N HqL Lq q
u C m M u C u

++ +
≤ ∇ +



 

R  (5.26)
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And also, by (5.20) 

 1 2
1 1 00( )D ( D( )) = D ( ( )D( )) :yB iv v iv y u uµ µ−
− −+ Φ +A R

with 2 2 2
1: = ( : | , , : | )Nu u uR R R  and 

 2 1

, , =1 , =1
: | = : | ( ) [ ( ){ ( ) : }].

N N
d

s s si kj kj i mj m ij
i j k mk

u u b a b x a a D u b u
x

µ∂
+ + + ∇

∂∑ ∑
 



R R

 By (5.1) 

 2 2
11 1 ( )2( ) ( )

: ( .NN MN N HqL Lq q
u C m M u C u

++ +
≤ ∇ +



 

R  (5.27)

 And also, we have

 1 3
1 1( )( d ) = d :B iv v iv u u−
− −+ Φ ∇ Φ ∇ + A R

with 3 3 3
1: = ( : | , , : | )Nu u uR R R  and 

 3 2 2

=1 =1
: | = ( : ) { ( ( ))} (d : ).

N N

s si ki si ki ki
k is k

u u a b b a b ivu u
x x
∂ ∂

∇ + + + + ∇
∂ ∂∑ ∑R B B

By (5.1) 

 3 2
11 1 ( )( ) ( )

: ( ).NN KN N HqL Lq q
u C m M u C u

++ +
≤ ∇ +



 

R  (5.28)

 Let 

 1 1 0( ) := ( )(D ( ( )) d ) ,yf u B iv D v ivvµ− −+ Φ −∇ Φ Ag

and then 

 4
0( ) = D ( ( ) ( )) d :f u iv y D u ivu uµ −∇ +R

with 4 4 4
1: = ( : | , : | )Nu u uR R R  and 

 4 2 3
0: | = (D ( ( ) ( )) d ) : : .su iv y D u ivu u uµ −∇ + −R R Rg g g

By (5.1), (5.13), (5.15), (5.26), (5.27), and (5.28), 

 4 2
11 1 ( )2( ) ( )

: ( 1) .NN MN N HqL Lq q
u C m M u C u

++ +
≤ + ∇ +



 

R  (5.29)

 In view of (5.6), (5.21) and (5.23), setting 

= ,hρ Φ

 1 2
0 0 0 0( , ) =< ( ( ) ( )) ( ) , > : ( ( ) ( )) ( ) : ,f u x x D u n n u x x x uρ µ µ µ δ δ ρ δ ρ+′− + ∇ − − ∆ − − ∇  

  B D B

we have 

 0 0 0 00 0< D(v) , > d =< ( )D(u) , > ( ) d ( , ).y yn n h ivv y n n y ivu f uµ δ µ δ ρ ρ+ + Γ+
′− ∆ − − ∆ − +

Thus, 1( , ) = ( , )bK u K v hρ Φ  satisfies the variational equation:

 0 4
1 1 0( ( , ), ) ( ( , ), ) = (D ( ( )D(u)) d u : , )N N NK u K u iv y iv uρ ψ ρ ψ µ ψ

+ + +
∇ ∇ + ∇ ∇ −∇ + ∇

  

B R

for any 1
,0

ˆ ( )N
qHψ ′ +∈  , subject to 1 0 0 0 0( , ) =< ( ) ( ) , > ( ) d ( , )K u y D u n n y ivu f uρ µ δ ρ ρ′− ∆ − +  on 0

N


.

Let 1 1
0 ,0

ˆ( , ) ( ) ( )N N
q qK u H Hρ + +∈ +

   be a unique solution of the weak Dirichlet problem:

 1 N
0 0 q ,0

ˆ( ( , ), ) = (D ( ( )D(u)) d , ) for any H ( ),N NK u iv y ivuρ ψ µ ψ ψ ′ +
+ +

∇ ∇ −∇ ∇ ∈
 





subject to 0 0 0 0 0( , ) =< ( )D(u) , > ( ) dK u y n n y ivuρ µ δ ρ′− ∆ −  on 0
N


. Setting 1 0 2( , ) = ( , ) ( , )K u K u K uρ ρ ρ+ , we then see that 

2 ( , )K u ρ  satisfies the variational equation: 

 0 4 0
2 2 0( ( , ), ) ( ( , ), ) = ( : ( , ), )N N NK u K u u K uρ ψ ρ ψ ρ ψ

+ + +
∇ ∇ + ∇ ∇ − ∇ ∇

  

B R B

for any 1
,0

ˆ ( )N
qHϕ ′ +∈  , subject to 2 ( , ) = ( , )K u f uρ ρ  on 0

N


. In view of Lemma 5.2, we have 

 4 0
2 1 0( , ) = ( : ( , ), ( , )).K u u K u f uρ ρ ρ− ∇ K R R

By Lemma 5.2, (5.17), (5.22), (5.24), (5.7), and (5.29), we have 

 
 

2 ( )

2 3
1 21 1 ( ) ( )2( ) ( )

( , )

(1 ) ( ) ( ).

NLq

N NN MN N H Hq qL Lq q

K u

C m M u C u

ρ

ρ ρ

+

+ ++ +

∇

≤ + ∇ + ∇ + +



 

 

 (5.30)
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 Since 

1 1
, =1

( , ) | = ( ) (u, )
N

b s si ki ki
i k k

K v h a a b K
x

ρ−
∂

∇ +
∂∑A

 

0 0 2
=1 =1 =1 =1

= ( , ) ( ) ( , ) ( ) ( , ),
N N N N

si ki ks si ki
k i k is k k

K u a b K u a b K u
x x x

ρ ρ δ ρ∂ ∂ ∂
+ + +

∂ ∂ ∂∑ ∑ ∑ ∑ 

by (5.25) we see that the first equation of Eq.(5.11) is transformed to

 5 N
0 0D ( ( ) ( ) ( , ) ) ( , ) = in ,u iv y D u K u I u hλ µ ρ ρ +− − +

R

where 1=h g− ΦA , 5 5 5
1( , ) = ( ( , ) | , , ( , ) | )NR u u uρ ρ ρR R , and 

 
5 1

0 2
=1 =1 =1 =1

( , ) | = : | ( ) ( , ) ( ) ( , ).
N N N N

s s si ki ks si ki
k i k ik k

u u a b K u a b K u
x x

ρ ρ δ ρ∂ ∂
− + + +

∂ ∂∑ ∑ ∑ ∑R R

By (5.3), we have 

 1 1 1 0 1= ( , , ) = ( ),N NNv n u a a u b u n u bΤ Τ Τ
+ − − + − +⋅ − ⋅ + ⋅ ⋅ + ⋅A A A

and so the second equation of Eq.(5.11) is transformed to 

 6
0 0( ) ( , ) = dA y u n u hσ σλρ ρ ρ′+ ⋅∇ − ⋅ +R

with =d dh g Φ  and 
6

0 1( , ) = ( ) for =0,u u bρ σ− +− ⋅R A

6
0 1( , ) = ( ( ) ( )) ( ) for (0,1).u A x A x u bσ σ σρ ρ σ− +′− ∇ − ⋅ ∈ R A

 By (5.3) and (5.20), we have 7
1 0 0 10 ( ) = ( ) ( ) ( )y D v n y D u n uµ µ− + +A R , where 7

1 ( )uR  is an N - vector of functions whose ths  
component, 7

1 ( ) |suR , is defined by 
7

1 0( ) | = ( ( ) ( )) ( )s sNu x x D uµ µ− − R

0 0
, =1

( ( ) ( ) ( )) ( ( ) : ( )).
N

d
ij j si si ij Nj j

i j
y x x a b D u a b u a bµ µ µ + ++ + − + ∇ − +∑ 

By (5.3), 

 1 0 0 0 1 2 0 1( , ) = ( , ) ( , ) ( , )( ).bK v h n K u n K u b K u n bρ ρ ρ− + − + − ++ + + A A A

By (5.6), 

1 0 0 0 00 ( ) = ( )( ) ( ( ) ( ))( )y h n y n x x nδ δ ρ δ δ ρ− Γ ++
′ ′∆ ∆ + − ∆ A

1 0 1( ){( )( ) ( )( )}.x b n bδ ρ ρ− + + − +′+ ∆ + + A D A

Putting formulas above together yields that the third equation of Eq.(5.11) is transformed to the equation:

 7 N
0 0 0 0 0 0( ( ) ( ) ( , ) ) ( )( ) ( , ) = on ,by D u K u I n y n u hµ ρ δ ρ ρ′− − ∆ +

R

where 1=b bh g− ΦA , and 
7 7

1 0 1 2 0 1( , ) = ( , ) ( , )( ) ( , )( )u u K u b K u n bρ ρ ρ ρ− + − +− − +R R A A

0 0 1 0 1( ( ) ( ))( ) ( ){( )( ) ( )( )}.x x n x b n bδ δ ρ δ ρ ρ− + + − +′ ′− − ∆ − ∆ + +   A D A

Summing up, we have seen that Eq.(5.11) is transformed to the following equations: 

 

 

5 N
0 0

6 N
0 0 0

7 N
0 0 0 0 0 0

D ( ( )D(u) ( , )I) (u, ) = in ,

( ) (u, ) = on ,

( ( )D(u) ( , )I) ( )( ) (u, ) = on ,
d

b

u iv y K u h

A y u n R h

y K u n y n h
σ σ

λ µ ρ ρ

λρ ρ ρ

µ ρ δ ρ ρ

+ − − +
 ′+ ⋅∇ − ⋅ +
 ′− − ∆ +











R

R

 (5.31)

where 1=h g− ΦA , =d dh g Φ , 1=d dh g− ΦA , and 5( , )u ρR , 6 ( , )uσ ρR  and 7 ( , )u ρR  are linear in u  and ρ  and satisfy 
the estimates:
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5 2 3
1 21 ( ) ( )2( ) ( ) ( )

6 2
12 1/0 1 ( )2( ) ( )0

6 2 3
1 22 1/ 1 ( ) ( )2( ) ( ) ( )0

7

( , ) ( ) ( )},

( , ) ,

( , ) ( ) ( },

( , )

N NMN N N H Hq qL L Lq q q

Nq MN N HqW Lqq

b
N Nq MN N N H Hq qW L Lq qq

L

u CM u C u

u CM u C u

u CM u C u

u

σ

ρ ρ ρ

ρ

ρ ρ σ ρ

ρ

+ ++ + +

− ++

−
− + ++ +

≤ ∇ + ∇ + +

≤ ∇ +

≤ ∇ + ∇ + +

 

  



 

 

  

R

R

R

R 2
11 ( ) ( ) ( )2( ) ( )

7 2 3
1 211 ( ) ( )2( ) ( ) ( )

( ) ( ),

( , ) ( ) ( ).

N N NMN NL L Hq q qLq q

N NMN N N H Hq qH L Lq q q

CM u C u

u CM u C u

ρ ρ

ρ ρ ρ

+ + ++ +

+ ++ + +

≤ ∇ + ∇ + +

≤ ∇ + ∇ + +

  

 

 

  

R

 (5.32)

Here and in the following, C  denotes a generic constant depending on N , q , 1m , and 2m  and 2MC  a generic constant 
depending on N , q , 1m , 2m , 3m  and 2M . By Theorem 4.1, there exists a large numbger 0λ  and operator families 0 ( )λA  
and 0 ( )λH  with 

2 3
0 , 0 ,0 0( ) H ( , ( ( ), ( ) )), ( ) H ( , ( ( ), ( )))N N N N N

q qol H ol Hσ λ σ λλ λ+ + + +∈ Λ ∈ Λ   A L Y H L Y

such that for any , 0σ λλ ∈Λ  and ( , , ) ( )N
qf d h Y +∈ 

, u  and ρ  with 

 0 0= ( ) ( , , ), = ( ) ( , , ),u F f d h F f d hλ λλ ρ λA H

where 1/2( , , ) = ( , , , )F f d h f d h hλ λ , are unique solutions of the equations: 

 N
0 0

N
0 0 0

N
0 0 0 0 0 0

D ( ( )D(u) ( , )I) = f in ,

( ) = on ,

( ( )D(u) ( , )I) ( )( ) = h, on ,

u iv y K u

A y u n d

y K u n y n
σ

λ µ ρ

λρ ρ

µ ρ δ ρ

+ − −
 ′+ ⋅∇ − ⋅
 ′− − ∆











and 
/2

2 0 , 0( ( ), ( ) )
({( ) ( ( )) | }) ,s j

j bN N NHq
rτ σ λτ λ λ λ−

+ +
∂ ∈Λ ≤

 L Y
R A

3 0 , 0( ( ), ( ) )
({( ) ( ( )) | })s k

N k N N bHq
rτ σ λτ λ λ λ−

+ +
∂ ∈Λ ≤

 L Y
R H

for = 0,1s , = 0,1,2j , and = 0,1k . Where, br  is a constant depending on ε , N , 1m , and 2m .

Let 0= ( ) ( , , )d bu F h h hλλA  and 0= ( ) ( , , )d bF h h hλρ λH  in (5.31). Then, Eq.(5.31) is rewritten as 

 

 

5 8 N
0 0

6 8 N
0

7 8 N
0 0 0 0 0 0

D ( ( ) ( ) ( , ) ) ( , ) = ( ) ( , , ) in ,

( , ) = ( ) ( , , ) in ,

( ( )D(u) ( , )I) ( )( ) ( , ) = ( ) ( , , ) on ,

d b

d d d b

b b d b

u iv y D u K u I u h F h h h

A u n R u h F h h h

y K u n y n u h F h h h

λ

σ σ λ

λ

λ µ ρ ρ λ

λρ ρ ρ λ

µ ρ δ ρ ρ λ

+

+

 − − + +
 ′+ ⋅∇ − ⋅ + +
 ′− − ∆ + +











R R

R

R R

 (5.33)

 where we have set 
8 5

1 2 3 4 0 1 2 3 4 0 1 2 3 4( )( , , , ) = ( ( )( , , , ), ( )( , , , )),F F F F F F F F F F F Fλ λ λR R A H
8 6

1 2 3 4 0 1 2 3 4 0 1 2 3 4( )( , , , ) = ( ( )( , , , ), ( )( , , , )),d F F F F F F F F F F F Fσλ λ λR R A H
8 7

1 2 3 4 0 1 2 3 4 0 1 2 3 4( )( , , , ) = ( ( )( , , , ), ( )( , , , )).b F F F F F F F F F F F Fλ λ λR R A H

 Let 
 9 8 8 8( ) = ( ( ) , ( ) , ( ) )d bF F F Fλ λ λ λR R R R

for 1 2 3 4= ( , , , ) ( )N
qF F F F F +∈ Y . Notice that 

 9 8 8 1/2 8 8 N
1 2 3 4 q( ) = ( ( ) , ( ) , ( ) , ( ) ) ( ) forF=(F ,F ,F ,F ) ( ),N

d b b qF F F F Fλ λ λ λ λ λ + +∈ ∈ R R R R R Y Y

and that the right side of Eq.(5.33) is written as 9( , , ) ( ) ( , , )d b d bh h h F F h h hλλ+ . By (5.32), (5.4), Proposition 3.4, and Theorem 
4.1, we have 

 9 1/2
, 1 1 11 2( ( ))

({( ) ( ( )) | }) ( )N M
q

F CM Cτ λ σ λ στ λ λ λ λ γ−

+
∂ ∈Σ ≤ + +

L Y
R R  (5.34)

 for any 1 0λ λ≥ . Here and in the following, C  denotes a generic constant depending on N , ε , 1m , 2m , and KC , and 2MC  
denotes a generic constant depending on N , ε , 1m , 2m , 3m , KC , and 2M . Choosing 1M  so small that 1 1 / 4NC M ≤  and 
choosing 1 > 0λ  so large that 1/2

12 1 / 8MC λ− ≤  and 1
12 8MC σλ γ− ≤ , by (5.34) we have 

 9
, 1( ( ))

({( ) ( ( )) | }) 1 / 2N
q

Fτ λ σ λτ λ λ
+

∂ ∈Λ ≤

L Y
R R  (5.35)
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 for = 0,1 . Since 1σγ ≥  and we may assume that 2 1MC ≥ , if 2
1 264 MC σλ γ≥ , then 1/2

12 1 / 8MC λ− ≤  and 1
12 1 / 8.MC σλ γ− ≤

Recall that for 1 2 3 4= ( , , , ) ( )N
qF F F F F +∈ Y  and ( , , ) ( )N

d b qh h h Y +∈ 

, 

 

 

2 1/ 11 2 3 4 1 3 2 4( ) ( )( ) ( ) 0

2 1/ 1( )( ) ( ) ( )0

( , , , ) = ( , ) ,

( , , ) =

q N NN N W HL qq q q

qNN N Nd b d bLX W Hqq qq

F F F F F F F F

h h h h h h

−
++ +

−
++ +

+ +

+ +

  

  

Y
 (5.36)

(cf. Remark 2.2, where Ω  should be replaced by N
+ ). By (5.35) we have 

 9
( )( )

( ( ) ( , , )) (1 / 2) ( , , ) .Nd b d bN qq
F F h h h F h h hλ λ λλ

++
≤





YR Y   (5.37)

In view of (5.36), when = 0λ / , 
( )( , , ) Nd b q

h h hλ +YP  is an equivalent norm to 
( )( , , ) Nd b q

h h h
+X

. Thus, by (5.37) 
9 1 9

=1( ( ) ) = ( ( ) ) j
jI F Fλ λλ λ∞−+ −∑R R  exists in ( ( ))N

qX +L . Setting

 
9 1 9 1

0 0= ( ) ( ( ) ) ( , , ), = ( ) ( ( ) ) ( , , )d b d bu F I F h h h F I F h h hλ λ λ λλ λ ρ λ λ− −+ +A R H R       (5.38)   

by (5.33) we see that u  and ρ  are solutions of Eq.(5.31). In view of (5.33), 9 1 9
=0( ( )) = ( ( )) j

jI F Fλ λλ λ∞−+ −∑R R  exists in 
( ( ))N

q +L Y , and 

 9 1
, 1( ( ))

({( ) ( ( )) | }) 4N
q

I Fτ λ σ λτ λ λ−

+
∂ + ∈Λ ≤

L Y
R R  (5.39)

 for = 0,1 . Since

 9 1 9 9 9 1

=0 =0
(I ( ) ) = ( ( ) ) = ( ( ( )) ) = (I ( )) ,j j

j j
F F F F F F F Fλ λ λ λ λ λ λ λλ λ λ λ

∞ ∞
− −+ − − +∑ ∑R R R R

defining operators 1( )λA  and 1( )λH  acting on 1 2 3 4= ( , , , ) ( )N
qF F F F F +∈ Y  by 

 9 1 9 1
1 0 1 1 0( ) = ( )( ( )) , ( ) = ( )(I ( )) ,F I F F F F Fλ λλ λ λ λ λ λ− −+ +A A R H H R

by (5.38) 1= ( ) ( , , )d bu F h h hλλA  and 1= ( ) ( , , )d bF h h hλρ λH  are solutions of Eq.(5.31). Moreover, by (5.39) and Theorem 4.1 

 

 

/2
2 1 , 1( ( ), ( ) )

3 1 , 1( ( ), ( ) )

({( ) ( ( )) | }) 4 ,

({( ) ( ( )) | }) 4 ,

j
j bN N NHq q

k
N k N N bHq q

r

r

τ σ λ γσ

τ σ λ γσ

τ λ λ λ

τ λ λ λ

−
+ +

−
+ +

∂ ∈Λ ≤

∂ ∈Λ ≤



 



 

L Y

L Y

R R

R H
 (5.40)

for = 0,1 , = 0,1,2j  and = 0,1k . Recalling that

 1 1
1 1 1= , = , = , = , = ,d d d dv u h h g h g h gρΤ − −
− − −Φ Φ Φ Φ Φ    A A A

we define operators ( )b λA  and ( )b λH  acting on 1 2 3 4= ( , , , ) ( )qF F F F F +∈ ΩY  by 
1

1 2 3 4 1 1 1 1 2 1 3 4( , , , ) = [ ( )( , , , )] ,b F F F F F F F FλΤ −
− − −Φ Φ Φ Φ Φ    A A A A A

1
1 2 3 4 1 1 1 2 1 3 4( , , , ) = [ ( )( , , , )] .b F F F F F F F Fλ −

− −Φ Φ Φ Φ Φ    H H H H

Obviously, given any ( , , ) ( )d b qg g g Y +∈ Ω , = ( ) ( , , )b d bu F g g gλλA  and = ( ) ( , , )b d bh F g g gλλH  are solutions of Eq.(5.11). From 
(5.1) we have 

1
( )( )

for =0,1,2,NK HqHq
g C g−

+Ω+
Φ ≤







 

3 1 2
1 ( )2( ) ( )

( ) ,NK MN LqL Hq q
g C g C g−

+Ω+ +
∇ Φ ≤ ∇ + ∇







( ) ( ) for =0,1,2.N KH Hq q
h C h h

Ω+ +
Φ ≤

 



 

and so, in view of (5.12) we can choose 0 1λ λ≥  suitably large such that ( )b λA  and ( )b λH  satisfy (5.12). This completes 
the existence part of Theorem 5.1.

The uniqueness can be proved by showing a priori estimates of solutions of Eq. (5.11) in the same manner as in the proof 
of Theorem 3.5. This completes the proof of Theorem 5.1.

Proof of theorem 2.1
Some preparation for the proof of theorem 2.1
First, we state several properties of uniform kC  domains ( = 2,3k ).

Proposition 6.1 Let = 2k  or 3 and let Ω  be a uniformly kC  domain in N


. Let 1M  be any number in (0,1) . Then, there 
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exist two positive constants 2M  and 0r  depending on 1M , at most countably many N -vector of functions ( )k N N
j CΦ ∈ 

 
and points 0

jx ∈Ω  and 1
jx ∈Γ  such that the following assertions hold:

1) The maps: ( )N N
jx x∋ Φ ∈  

 are bijections satisfying the following conditions: =i i i
j j jB∇Φ +A , 1

, ,( ) =i i i
j j jB−

− −∇ Φ +A , 
where i

jA  and ,
i
j −A  are N N×  constant orthonormal matrices, and i

jB  and ,
i
jB −  are N N×  matrices of 1( )k NC −


 

functions defined on N


 which satisfy the conditions: , 1( )
( , )i i

j j NL
B B M−

∞
≤



 and , ( )
( , )i i

j j KNLr
B B C−∇ ≤



, where KC  is a 
constant depending on constans α , β  and K  appearing in Definition 1.1 but independent of 1M . Moreover, if = 3k , 
then 2

, 2( )
( , )i i

j j NL
B B M−

∞
∇ ≤



. 

2) 

00 1
00 0=1 =1

1 11 1
0 0 00 0

( )= ( ( )) ( ( ( ) ( ))),

( ) ( ) = ( ).( ) ( ) = ( ),

N
r jr j j r ji j

NN
j r j r jj r j r j

B xB x B x

B x B xB x B x

∞ ∞
+

+

⊂ ΩΩ ∪ Φ ∩

Φ ∩ Γ∩Φ ∩ Ω∩







 

3) There exist C∞  functions i
jζ  and i

jζ  ( = 0,1, )i j N∈  such that 0 , 1i i
j jζ ζ≤ ≤ , 

0s s ( )i i i
j j r jupp upp B xζ ζ⊂ ⊂ , 

21 1( ) ( )
,i i

j jk N k NH H
Mζ ζ− −

∞ ∞
∇ ∇ ≤

 

 , = 1i
jζ  on s i

juppζ , 1
=0 =1 = 1i

ji j ζ∞∑ ∑  on Ω , 1
=1 = 1jj ζ∞∑  on Γ . 

4) There exists a natural number 2L ≥  such that any 1L +  distinct sets of 
0{ ( ) | = 0,1,2, = 1,2,3, }i

r jB x i j 

 have an empty 
intersection.

Proof: A proof is given in Appendix 10. In the following, we use the symbols given in Proposition 6.1 and we write 
= ( )N

j j +Ω Φ 

, and 0= ( )N
j jΓ Φ 

 for the sake of simplicity. In view of the assumptions (1.2) and (1.3), we may assume that 
0 0

1 1 r j0| ( ) ( ) | for anyx B (x );jx x m Mµ µ− ≤ ∈

1 1 1
1 1 1 1 j r j0| ( ) ( ) | ,| ( ) ( ) | for any x B (x );j jx x m M x x m Mµ µ δ δ− ≤ − ≤ ∈Ω ∩

                           1 1
2 1 j r j0| ( ) ( ) | for any x B (x );jA x A x m Mσ σ− ≤ ∈Γ ∩                                                 (6.1)

0 1 1( ), ( ) , | ( ) |,| ( ) | for any x ,m x x m x x mµ δ µ δ≤ ≤ ∇ ∇ ≤ ∈Ω

               2 1/2 3( )| ( ) | for any x , for any (0,1).b
qWr

A x m A mσ σ σ σ−
− Γ

≤ ∈Γ ≤ ∈  (6.2)

 Here, 0m , 1m , 2m , 3m , σ  and r  are constants given in (1.2) and (1.3).

We next prepare some propositions used to construct a parametrix. In the following, we write 
0= ( )i i

j r jB B x  for the sake of 
simplicity. By the finite intersection property stated in Proposition 6.1 iv, for any [1, )r∈ ∞  there exists a constant ,r LC  such 
that 

 
1

, r( ) ( )
=1

[ ] for any f L ( ).r ri r LL B Lr rjj
f C f

∞

Ω∩ Ω
≤ ∈ Ω∑  (6.3)

 
Proposition 6.2 Let X  be a Banach space and *X  its dual space, while 

X
, *X

, and < , >⋅ ⋅  be the norm of X , the norm 
of *X , and the duality pairing between of X  and *X , respectively. Let n∈ , = 1, ,l n , and =1{ }n

l la C⊂ , and let ∞
1=}{ j

l
jf  

be sequences in *X  and =1{ }l
j jg ∞ , =1{ }j jh ∞  be sequences of positive numbers. Assume that there exist maps : [0, )j X → ∞N  

such that 

 3 3
=1

|< , >| ( ) ( = 1, , ), |< , >| ( )
n

l l l
j j j l j j j

l
f M g l n a f M hϕ ϕ ϕ ϕ≤ ≤∑N N

 for any Xϕ ∈  with some positive constant 3M  independent of j N∈  and = 1, ,l n . If 

      ( ) ( ) ( ) ( )4
=1 =1 =1

< , < , ( )
q qq ql

j j j X
j j j

g h Mφ ϕ
∞ ∞ ∞ ′′

∞ ∞ ≤∑ ∑ ∑ n

with 1 < <q ∞  and = / ( 1)q q q′ −  for some positive constant 4M , then the infinite sum =1=l l
jjf f∞∑  exists in the strong 

topology of *X  and 

 1/ 1/
3 4 3 4*

*=1 =1 =1
( ( ) ) , ( ( ) ) .

n
l l q q l q q

j l jX j l jX

f M M g a f M M h
∞ ∞

≤ ≤∑ ∑ ∑  (6.4)

 
Proof: For a proof, see Proposition 9.5.2 in Shibata.28 Let 0n∈ , ( )n

qf H∈ Ω , and let i
jη  be functions in 0 ( )i

jC B∞  with 

0( )
i
j n NH

cη
∞

≤


 for some constant 0c  independent of j∈ . Since 1 1=j j jB BΩ∩ Ω ∩ , by (6.3) 

 0 1
( )( ) ( )=1 =1

.
q q q

j j q nn N n HH H qq q jj j
f f C fη η

∞ ∞

ΩΩ
+ ≤∑ ∑



 (6.5)

 The following propositions are used to define the infinite sum of R -bounded operator families defined on N


 and jΩ .
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Proposition 6.3 Let 1 < <q ∞ , = 0,1i , and 0n∈ . Set 0 = N
j H  and 1 =j jΩH . Let i

jη  be a function in 0 ( )i
jC B∞  such that 

1( )
i
j n NH

cη
∞

≤


 for any j∈  with some constant 1c  independent of j∈ . Let jf  ( )j∈  be elements in ( )n i
q jH H  such 

that 
=1 ( )

<
q

n ijj Hq j
f∞ ∞∑ H

. Then, =1
i
j jj fη∞∑  converges some ( )n

qf H∈ Ω  strongly in ( )n
qH Ω , and 

 1/
( ) ( )

=1
{ } .

q q
n n iq jH Hq q jj

f C f
∞

Ω
≤ ∑ H

Proof : For a proof, see Proposition 9.5.3 in Shibata.35

Proposition 6.4 Let 1 < <q ∞  and = 2,3n . Then we have the following assertions.

1) There exist extension maps 1/: ( ) ( )n n q n
j q j q jT W H− Γ → Ω  such that for any 1/ ( )n q

q jh W −∈ Γ , =n
jT h h  on jΓ  and 

1/ ( )( )
n

n qj n W jqHq j
T h C h − ΓΩ

≤  with some constant > 0C  independent of j∈ .

2) There exists an extension map 1/: ( ) ( )n n q n
q qT W H−

Γ Γ → Ω  such that for 1/ ( )n q
qh W −∈ Γ , =nT h hΓ  on Γ  and 

1/ ( )( )
n

n qn WqHq
T h C h −Γ ΓΩ

≤  with some constant > 0C .

Proof: For a proof, see Proposition 9.5.4 in Shibata.35

Proposition 6.5 Let 1 < <q ∞  and = 2,3n  and let 1
0 ( )j jC Bη ∞∈  ( )j N∈  with 2( )n Nj H

cη
∞

≤


 for some constant 2c  
independent of j∈ . Then, we have the following two assertions:

1) Let jf  ( )j∈  be functions in 1/ ( )n q
q jW − Γ  such that 1/=1 ( )

<
q

n qjj W jq
f∞

− Γ
∞∑ , and then the infinite sum =1 j jj fη∞∑  

converges to some 1/ ( )n q
qf W −∈ Γ  strongly in 1/ ( )n q

qW − Γ  and 1/
1/ 1/( ) ( )

=1
{ } .

q q
n q n qq jW Wq jqj

f C f
∞

− −Γ Γ
≤ ∑

2) For any 1/ ( )n q
qh W −∈ Γ , 1/ 1/( ) ( )=1

.
q q

n qj n qW Wjq qj
h C hη

∞

− −Γ Γ
≤∑

Proof: For a proof, see Proposition 9.5.5 in Shibata.35

Parametrix
In this subsection, we construct a parametrix of reduced Stokes equations (2.4). Let { }i

j jζ ∈  and { }i
j jζ ∈
  ( = 0,1)i  be 

sequences of 0C∞  functions given in Proposition 6.1, and let ( , , ) ( )qf d h Y∈ Ω  (cf. (2.14)). Recall that = ( )N
j j +Ω Φ 

 and 
0= ( )N

j jΓ Φ 

. Let 
1 1 1( ) = ( ) ( ) (1 ( )) ( ), ( ) = ( ) ( ) (1 ( )) ( ),i i i i

j j j j j j j jx x x x x x x x x xµ ζ µ ζ µ δ ζ δ ζ δ+ − + −   

1 1 1
, ( ) = ( ) ( ) (1 ( )) ( ).j j j jA x x A x x A xσ σ σζ ζ+ − 

Notice that 

 1 1 1 1
,= , = , = ,i i i

j j j j j j j j jA Aσ σζ µ ζ µ ζ δ ζ δ ζ ζ

because 1 = 1jζ  on 1s juppζ . We consider the equations:

                         0 0 0 0 0 N
0D ( ( ) ( ) ) = in ;j j j j j ju iv D u K u I fλ µ ζ− − 

   (6.6)

 

                

1 1 1 1 1
1 j

1
, j

1 1 1 1
1 j

D ( ( ) ( , ) ) = in ,

= on ,

( ( ) ( , ) ) ( ) = on .

j j j j j j j

j j j j j jj

j j j j j j j j j jj

u iv D u K u h I f

h A h n u d

D u K u h I n h n h

σ

λ µ ζ

λ ζ

µ δ ζ

Γ

Γ

 − − Ω
 + ⋅∇ − ⋅ Γ


− − ∆ Γ







   (6.7)

Here, for 2 ( )N N
qu H∈ 

, 1
0

ˆ( ) ( )N
j qK u H∈   denotes a unique solution of the weak Laplace equation: 

 0 1 N
0 q

ˆ( ( ), ) = (D ( ( )) d , ) for any H ( ).j N j NK u iv D u ivuφ µ φ φ ′∇ ∇ −∇ ∇ ∈
 


 (6.8)

And, for 2 ( )q ju H∈ Ω  and 3( )q jh H∈ Ω , 1 1
1 ,0

ˆ( , ) ( ) ( )j j q j q jK u h H H∈ Ω + Ω  denotes a unique solution of the weak Dirichlet 
problem: 

 1 1
1 q ,0 j

ˆ( ( , ), ) = (D ( ( )) d , ) for any H ( ),j jj jK u h iv D u ivuϕ µ ϕ ϕ ′Ω Ω∇ ∇ −∇ ∇ ∈ Ω  (6.9)

subject to 1
1 ( , ) =< ( ) , > dj j j j j jK u h D u n n ivu hµ δ Γ− − ∆  on jΓ . Moreover, we denote the unit outer normal to jΓ  by jn , which 

are defined on N


 and satisfies the estimate:

 2
2( ) ( ) ( )

, , .N Nj j K j MNL L L
n C n C n C

∞ ∞ ∞
≤ ∇ ≤ ∇ ≤
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Let 1 1= ( , , )NjΓ −∇ ∂ ∂

 with = /j jx∂ ∂ ∂  for = ( ,0)j jy x′Φ ∈Γ  and let 
jΓ∆  be the Laplace-Beltrami operator on jΓ , which 

have the form: 

 1
j j= on ( ),j jf f f −

Γ Γ′∆ ∆ + Φ ΓD

where 1 2
=1= N

jjf f−′∆ ∂∑  and 1 1
. =1 =1= N Nj j

k k k kj k kf a f a f− −
Γ ∂ ∂ + ∂∑ ∑

 



D , and j
ka


 and j
ka  satisfy the following estimates: 

1 1 1( ) ( )
, ( , , , ) ,j j j j

k k N k k KN NL L
a CM a a a C−

∞ ∞
≤ ∂ ∂ ≤

  

 



1 1 1 2( )
( , , , ) .j j j

k N k k MNH
a a a C−

∞
∂ ∂ ≤

 





Notice that =jn n  and =jΓ Γ∆ ∆  on 1 1=j j jB BΓ ∩ Γ∩ . We know the existence of 0 1
0

ˆ( ) ( )N
j j qK u H∈   possessing the estimate: 

 

0 0
0 1( ) ( )

( ) .j j jN NL Hq q
K u C u∇ ≤ ∇

 

 (6.10)

Let ρ  be a function in 0 0( )rC B∞  such that = 1NR
dxρ∫ . Below, this ρ  is fixed. Since 0

0 ( )j jK u c+  also satisfy the variational 
equation (6.8) for any constant c , we may assume that 

 

0 0
00 ( ) ( ) = 0.j j jB j

K u x x dxρ −∫   (6.11)

Moreover, choosing 1 (0,1)M ∈  suitably small, we have the unique existence of solutions 1 1 1
1 ,0

ˆ( , ) ( ) ( )j j j q j q jK u h H H∈ Ω + Ω  of 
Eq.(6.9) possessing the estimates:

 1 1
3 1/1 1 ( )( ) ( )

( , ) ( ).qj j j j j WL H jqq j q j
K u h C u h − ΓΩ Ω

∇ ≤ ∇ +  (6.12)

Let ( )q jY Ω  and ( )q jΩY  be the spaces defined in (2.14) replacing Ω  by jΩ . By Theorem 3.1 and Theorem 5.1, there exist 

constants 1 (0,1)M ∈  and 0 1λ ≥ , which are independent of j∈ , and operator families

 
2 2

0 , 1 ,0 0
3

, 0

( ) H ( , ( ( ) , ( ) )), ( ) H ( , ( ( ), ( ) )),

( ) H ( , ( ( ), ( )))

N N N N N
j q q j q j q j

j q j q j

ol L H ol H

ol H
ε λ σ λ γσ

σ λ γσ

λ λ

λ

∈ Σ ∈ Λ Ω Ω

∈ Λ Ω Ω

 S L S L Y

H L Y

such that for each j∈ , Eq.(6.6) admits a unique solution 0 0
0= ( )j j ju fλ ζS  and Eq.(6.7) admits unique 

solutions 1 1
1= ( ) ( , , )j j ju F f d hλλ ζS  and 1= ( ) ( , , )j j jh F f d hλλ ζH , where 1/2( , , ) = ( , , , )F f d h f d h hλ λ , and 

1 1 1 1/2 1 1( , , ) = ( , , , )j j j j jF f d h f d h hλζ ζ ζ λ ζ ζ     . Moreover, there exists a number > 0br  independent of 1M , 2M , and j∈  such that 

 

 

/2
2 0 , 0( ( ) , ( ) )

/2
2 1 , 0( ( ), ( ) )

3 , 0( ( ), ( ))

({( ) ( ( )) | }) ,

({( ) ( ( )) | }) ,

({( ) ( ( )) | }) ,

k
N N k N N j bL Hq q

k
k N j bHq j q j

n
n j bHq j q j

r

r

r

τ ε λ

τ ε λ σ

τ σ λ γσ

τ λ λ λ

τ λ λ λ γ

τ λ λ λ

−

−Ω Ω

−Ω Ω

∂ ∈Σ ≤

∂ ∈Λ ≤

∂ ∈Λ ≤



 





L

L Y

L : Y

R S

R S

R H

 (6.13)

for = 0,1 , j N∈ , = 0,1,2k , and = 0,1n . Notice that 0 0σλ γ λ≥ .

By (6.13), we have 

 

 

0 0 1/2 0 0 0
1 2( ) ( ) ( ) ( )

1 1/2 1 1
2 31 2 ( ) ( )( ) ( ) ( )

1 1 1/2
12 1/ ( ) ( )( ) ( )

| | | | ,

| | | | | |

( | | )

j j N j j b jN N NL H H Lq q q q

j j j j jH HL H H q j q jq j q j q j

qb j j L Hq j q jL Wq j jq

u u u u r f

u u u h h

r f d h h

λ λ ζ

λ λ λ

ζ ζ λ

Ω ΩΩ Ω Ω

− Ω ΩΩ Γ

+ + ≤

+ + + +

≤ + + +



  

 

 (6.14)

for , 0σ λ γσλ ∈Σ . Let 

 
1

1

=0 =1 =1
= , = .i i

j j j j
i j j

u u h hζ ζ
∞ ∞

∑∑ ∑  (6.15)

Then, by (6.6), (6.7), (6.14), Proposition 6.3, and Proposition 6.5, we have 2 ( )N
qu H∈ Ω , 3( )qh H∈ Ω , and 

1/2
1 2 2 3( ) ( ) ( ) ( ) ( )| | | | | |L H H H Hq q q q q

u u u h hλ λ λ
Ω Ω Ω Ω Ω
+ + + +

1/2
2 1/ 1( ) ( ) ( ) ( )( | | }qq b L W L Hq q qq

C r f d h hλ−Ω Γ Ω Ω
≤ + + +

for , 0σ λλ ∈Λ .
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Moreover, we have 

 

 

1

2

3

D ( D(u) (u, ) ) = ( )( , ,h) in ,

u n u = ( )( , ,h) on ,

( D(u) (u, ) (( ) )I)n = ( )( , ,h) on ,

u iv K h I f V f d

h A h d V f d

K h I h h V f d
σ σ

λ µ λ

λ λ

µ δ λ
Γ

Γ

 − − − Ω
 + ⋅∇ − ⋅ + − Γ
 − − + ∆ − Γ

F

B

 (6.16)

where we have set 
1 1 1

1 2( )( , , ) = ( )( , , ) ( )( , , ),V f d h V f d h V f d hλ λ λ+
1

1
1

=0 =1
( )( , , ) = [D ( ( ( ) ( ))) D ( ( )) D ( ( ))],i i i i i i i i i i

j j j j j j j j j j
i j

V f d h iv D u D u iv D u iv D uλ µ ζ ζ ζ µ ζ µ
∞

− + −∑∑
 

1 0 0 1 1
2 0 1

=1 =1
( )( , , ) = ( , ) ( ) ( , ),j j j j j j j

j j
V f d h K u h K u K u hλ ζ ζ

∞ ∞

∇ − ∇ − ∇∑ ∑

2 1 1 1

=1 =1
( )( , , ) = ( ) (( ) ) ( ),j j j j

j j
V f d h A x h uσ σλ ζ ζ

∞ ∞

Γ⋅ ∇ −∑ ∑F

3 3 3 3
1 2 3( )( , , ) = ( )( , , ) ( )( , , ) ( )( , , ),V f d h V f d h V f d h V f d hλ λ λ λ− −

 3 1 1 1 1 3 1 1
1 2 1

=1 =1
( )( , , ) = ( ( ) ( )) , ( )( , , ) = { ( , ) ( , )} ,j j j j j j j j

j j
V f d h D u D u n V f d h K u h K u h nλ µ ζ ζ λ ζ

∞ ∞

− −∑ ∑
 

3 1 1 1 1 1 1
3

=1
( )( , , ) = { ( ( ) ) ( )}.j j j j j jj j

j
V f d h h h hλ δ ζ ζ ζ

∞

Γ Γ∆ − ∆ +∑ B

For 1 2 3 4= ( , , , ) ( )qF F F F F ∈ ΩY , we define operators ( )p λA  and ( )p λB  acting on F  by 

 

0 0 0 1 1 1 1
1 1

=1 =1 =1
( ) = ( ) ( ) , ( ) = ( ) .p j j j j j j p j j j

j j j
F F F F Fλ ζ λ ζ ζ λ ζ λ ζ λ ζ

∞ ∞ ∞

+∑ ∑ ∑  A S S B H  (6.17)

Then, by Proposition 6.3 and (6.13), we have = ( ) ( , , )pu F f d hλλA , = ( ) ( , , )ph F f d hλλH , and 

 

 

2 3
, ,1 1

/2 1/2
2 , 11 2( ( ), ( ) )

1
3 , 11 2( ( ), ( ))

( ) H ( , ( ( ), ( ) )), ( ) H ( , ( ( ), ( ))),

({( ) ( ( )) | }) ( ) ,

({( ) ( ( )) | }) ( )

N
p q q p q q

j
j p M bNHq q

k
k p M bHq q

ol H ol H

C C r

C C r

σ λ σ λ

τ σ λ

τ σ λ

λ λ

τ λ λ λ λ

τ λ λ λ λ

−
−Ω Ω

−
−Ω Ω

∈ Λ Ω Ω ∈ Λ Ω Ω

∂ ∈Λ ≤ +

∂ ∈Λ ≤ +





L Y

L Y

A L Y B L Y

R A

R B

 (6.18)

for = 0,1 , = 0,1,2j , and = 0,1k  for any 1 0 σλ λ γ≥ .

Estimates of the remainder terms
For 1 2 3 4= ( , , , ) ( )qF F F F F ∈ ΩY , let 

1 1 1
1 2( ) = ( ) ( ) ,F F Fλ λ λ+V V V

1 0 0 0 0
1 0 1 0 1

=1
( ) = [D ( (D( ( ) ) D( ( ) )))j j j j j j

j
F iv F Fλ µ ζ λ ζ ζ λ ζ

∞

−∑  V S S

 
0 0 0 0 0 0

0 1 0 1D ( D( ( ) )) D ( D( ( ) ))]j j j j j j j jiv F iv Fζ µ λ ζ ζ µ λ ζ+ − S S

1 1 1 1
1 1

=1
[D ( (D( ( ) ) D( ( ) )))j j j j j j

j
iv F Fµ ζ λ ζ ζ λ ζ

∞

+ −∑  S S

 
1 1 1 1 1 1

1 1D ( D( ( ) )) D ( D( ( ) ))],j j j j j j j jiv F iv Fζ µ λ ζ ζ µ λ ζ+ − S S

1 0 0 1 1 1
2 0 0 1 1 1

=1 =1
( ) = ( ( ) , ( ) ) ( ( ) ) ( ( ) , ( ) ),p p j j j j j j j j j j

j j
F K F F K F K F Fλ λ λ ζ λ ζ ζ λ ζ λ ζ

∞ ∞

∇ − ∇ − ∇∑ ∑  V A B S S H

 
2 1 1 1 1

1
=1 =1

( ) = ( ) (( ) ( ) ) ( ( ) ),j j j j j j
j j

F A x F Fσ σλ ζ λ ζ ζ λ ζ
∞ ∞

Γ⋅ ∇ −∑ ∑ V H F S

 
3 3 3 3

1 2 3( ) = ( ) ( ) ( ) ,F F F Fλ λ λ λ+ +V V V V

3 1 1 1 1 1
1 1 1

=1
( ) = ( ( ( ) ) D( ( ) ))nj j j j j j j

j
F D F Fλ µ ζ λ ζ ζ ζ λ ζ

∞

−∑  V S S
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3 1 1 1
2 1 1

=1
( ) = { ( ( ) , ( ) ) ( ( ) , ( ) )}n,j j j j j j p p

j
F K F F K F Fλ ζ λ ζ λ ζ λ λ

∞

−∑  V S H A B

 
3 1 1 1 1 1 1

3
=1

( ) = { ( ( ( ) ) ( ) ) ( ( ) )}j j j j j j j j jj j
j

F F F Fλ δ ζ λ ζ ζ λ ζ ζ λ ζ
∞

Γ Γ∆ − ∆ +∑   V H H B H

Notice that 2 1 1
1=1( ) = ( ( ) )j j jjF Fσ λ ζ λ ζ∞∑ V F S  for 0=σ .

Let 
1 2 3 1 2 3( )( , , ) = ( ( )( , , ), ( )( , , ), ( )( , , )), ( ) = ( ( ) , ( ) , ( ) ).V f d h V f d h V f d h V f d h F F F Fσλ λ λ λ λ λ λ λV V V V

Since 0 0
0= ( )j j ju fλ ζS , 1 1

1u = ( ) F ( , , )j j j f d hλλ ζS , and 1= ( ) F ( , ,h)j j jh f dλλ ζ H , we have

 ( )( , ,h) = ( ) ( , ,h).V f d F f dλλ λV  (6.19)

In what follows, we shall prove that 

 1 1/2
( ( )) , 0 0, 20

({( ) (F ( )) | }) ( ( ))q b Mq C r Cτ λ ε σσ λτ λ λ ε λ γ λ− −
Ω ∂ ∈Λ ≤ + +



 

L YR V  (6.20)

for = 0,1  and 0 0λ λ≥ , where σγ  is the number given in Theorem 1.7.

To prove (6.20), we use Proposition 6.1, Proposition 3.4, Propositions 6.2–6.5, (5.6), (5.7), (6.1), (6.2), (6.5) and (6.13). In 
the following, 0λ  is any number such that 0 0λ λ≥ . We start with the following estimate of 1

1 ( )λV :

 1 1/2
1 0, 20( ( ), ( ) )

({( ) ( ) | }) ( = 0,1).N M bLq q
C rτ σ λτ λ λ λ−

Ω Ω
∂ ∈Σ ≤







L Y
R V  (6.21)

In fact, since , ( ) ( ) = ( ) ( )i i i i
m j j m j m m jD u D u u uζ ζ ζ ζ− ∂ + ∂

   

, and 
=1d ( ) d = ( )Ni i i

j j k j kkiv u ivu uζ ζ ζ− ∂∑ , for any n∈ , =1 , 0
{ }n n

σ λλ ⊂ Λ


 

, 

and 1 2 3 4 =1{ = ( , , , )} ( )n n
qF F F F F ⊂ Ω

     

Y , we have 
1 1

10
=1 ( )

( ) ( )
qn

Lq

r u F duλ
Ω

∑∫   



V

 
1 10 1

2 0 1 10 01 1=1 =1 =1( ) ( )

{ ( ) ( ) ( ) ( ) }
q qn n

q q
q j j j j

Nj H Hq q j

C M r u F du r u S F duλ ζ λ ζ
∞

Ω

≤ +∑ ∑ ∑∫ ∫     

 



 S

 
1/2 1/2 0

2 0 0 10 1=1 =1 ( )

{ ( ) ( )
qn

q q q
q j j

Nj Hq

C M r u F duλ λ λ ζ
∞

−≤ ∑ ∑∫    





 S

 
1 1/2 1

10 1=1 ( )

( ) ( ) }
qn

j j
Hq j

r u S F duλ λ ζ
Ω

+ ∑∫    





 
1 1/2 0 1

2 0 10 0
=1 =1 =1( ) ( )

{ ( ) ( ) }
q qn n

q q q q
q b j j

Nj Lq q j

C M r r u F du r u F duλ ζ ζ
∞

−

Ω

≤ +∑ ∑ ∑∫ ∫   

 



  

Y 
12 /2

2 0 0
=1 ( )

( ) .
qn

q q q q
q b

Lq

C M r r u F duλ−

Ω

≤ ∑∫  





This shows that 

 1 1/2
1 0, 20( ( ), ( ) )

({ ( ) | }) .N M bLq q
C rσ λλ λ λ−

Ω Ω
∈Σ ≤





L Y
R V

Analogously, we can show that 

 1 1/2
1 0, 20( ( ), ( ) )

({ ( ) | }) ,N M bLq q
C rτ σ λτ λ λ λ−

Ω Ω
∂ ∈Σ ≤





L Y
R V

and therefore we have (6.21).

For ( , )r N∈ ∞  and (1, )q∈ ∞ , by the extension of functions defined on jΓ  to jΩ  and Sobolev’s imbedding theorem, we 
have 

 2 1/ 2 1/2, ,( ) ( ) ( )q qq r KW H Wj q j jq q
ab C a b− −Γ Ω Γ

≤

for any 2 ( )ra H∈ Ω  and 2 1/ ( )q
q jb W −∈ Γ . Applying this inequality, we have 

1 1 1
2 1/ 2 3 2( ) ( )

(( ) ( ) ) , ( )b
qj j j j jW Hj q jq

A F Cq rM m Fσ ζ λ ζ σ λ ζ−
−Γ Γ Ω

⋅ ∇ ≤ H H
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for (0,1)σ ∈ . Thus, employing the same argument as in the proof of (6.21), we have
2 1/2

2 1/ 0 0, 20( ( ), ( ))
({( ) ( ) | }) ( = 0,1),q M bWq q

C rτ σ λτ λ λ λ−
−Ω Γ

∂ ∈Λ ≤







L Y
R V

2 1 1/2
2 1/ 0 0, 20( ( ), ( ))

({( ) ( ) | }) ( ) ( = 0,1)b
q M bWq q

C rτ σ σ λτ λ λ λ σ λ− − −
−Ω Γ

∂ ∈Λ ≤ +



 



L Y
R V

for (0,1)σ ∈ .

Employing the same argument as in the proof of (6.21), we also have
1/2 3 1/2

0, 20( ( ), ( ) )
({( ) ( ( )) | }) ( = 0,1),N m M bLq q

C rτ σ λτ λ λ λ λ−
Ω Γ

∂ ∈Λ ≤







L Y
R V

3 1/2
1 0, 20( ( ), ( ) )

({( ) ( ) | }) ( = 0,1),N m M bHq q
C rτ σ λτ λ λ λ−

Ω Γ
∂ ∈Λ ≤







L Y
R V

for = 1m  and 3. Noting that 1 1 1=j j jµζ µ ζ  and 1 1 1=j j jδζ δ ζ , we have 

 

 

1 1 1
1 1

=1

1 1 1 1
1 1

=1

1 1 1 1
1 1

=1

1 1 1 1 1

=1 =1

( ( ) , ( ) ) ( ( ) , ( ) )

= < D( ( ) ) D( ( ) ), >

{ d ( ) d ( ( ) )}

{ ( ( ) ) ( ( ) )} (

j j j j j j p p
j

j j j j j j
j

j j j j j j
j

j j j j j j jj j
j j

K F F K F F

F F n

iv F iv F

F F

ζ λ ζ λ ζ λ λ

µ ζ λ ζ ζ λ ζ

ζ λ ζ ζ λ ζ

δ ζ λ ζ ζ λ ζ ζ

∞

∞

∞

∞ ∞

Γ Γ

−

−

− −

− ∆ − ∆ −

∑

∑

∑

∑ ∑

 

 

 

 

S H A B

S S

S S

H H B 1( ) )j jFλ ζH

 (6.22)

on Γ , where we have used = jΓ Γ∆ ∆  and n=n j  on 1
j jBΓ ∩ . Employing the same argument as in the proof of (6.21), we 

have 
1/2 3 1/2

2 0, 20( ( ), ( ) )
({( ) ( ( )) | }) ( = 0,1),N M bLq q

C rτ σ λτ λ λ λ λ−
Ω Γ

∂ ∈Λ ≤







L Y
R V

3 1/2
1 2 0, 20( ( ), ( ) )

({( ) ( ) | }) ( = 0,1).N M bHq q
C rτ σ λτ λ λ λ−

Ω Γ
∂ ∈Λ ≤







L Y
H V

The final task is to prove that

 1 1/2
2 , , 0, 20( ( ), ( ) )

({( ) ( ) | }) ( ) ( = 0,1).N q r M bLq q
C C rτ εσ λτ λ λ ε λ−

Ω Γ
∂ ∈Λ ≤ +







L Y
R V  (6.23)

For this purpose, we use the following lemmata.

Lemma 6.6: Let Ω  be a uniformly 2C  domain in N


. Then, there exists a constant 1 > 0c  independent of j∈  such that
1

1 1 11 q,0 j( ) ( )
ˆ2 for any H ( ),H B L Bq j q jj j

cϕ ϕ ϕ
Ω ∩ Ω ∩

≤ ∇ ∈ Ω

1
1 1 11 q,0( ) ( )

ˆfor any H ( ),H B L Bq qj j
cψ ψ ψ

Ω∩ Ω∩
≤ ∇ ∈ Ω

1 N
01 0 1 q( )( )

ˆ( ) for any H ( ),j L BH B q jq j
c cϕ ϕ ϕ ϕ− ≤ ∇ ∈ 

1
01 0 1 q,0( )( )

ˆ( ) for any H ( ).j L BH B q jq j
c cψ ψ ψ ψ− ≤ ∇ ∈ Ω

 Here, ( )jc ϕ  and ( )jc ψ  are suitable constants depending on ϕ  and ψ , respectively.

Proof: For a proof, see Shibata [Lemma 3.4, Lemma 3.5].43

Lemma 6.7 Let 1 < <q ∞ . For 2 ( )N
qu H∈ 

, let 0 ( )jK u  be a unique solution of the weak Laplace equation (6.8) satisfying 
(6.11). Then, we have 

 00 ( )( )
( ) .Nj LL B qq j

K u C u≤ ∇


 (6.24)

Proof: Let ρ  be the same function in (6.11). Let ψ  be any function in 0
0 ( )jC B∞  and we set 

 0( ) = ( ) ( ) ( ) .j Nx x x x y dyψ ψ ρ ψ− − ∫




Then, 

 

0
0 00 ( ) ( )( ), = 0, .j qN L B Bq qj j

C B dx Cψ ψ ψ ψ∞
′′ ′

∈ ≤∫


  
 (6.25)

Moreover, 
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 1 * 1
1ˆ ( ) ( )

ˆ ˆ( ) = ( ), .N N
N Nq q qH Lqq

H H Cψ ψ ψ−
−′ ′ ′′

∈ ≤
 

 
   (6.26)

In fact, by Lemma 6.6, for any 1ˆ ( )N
qHϕ ′∈  , there exists a constant je  for which 

 00 ( )( )
.j q L BL B q jq j

e cϕ ϕ− ≤ ∇

Thus, by (6.25), we have

 
0 0 00( ) ( ) ( )( )

| ( , ) |=| ( , ) | ,N j N j qL B B L BL Bq q qj j jq j
e e Cψ ϕ ψ ϕ ψ ϕ ψ ϕ

′ ′
− ≤ − ≤ ∇

 

   

which yields (6.26). Let Ψ  be a function in 1ˆ ( )N
qH ′   such that 1 ( )N N

qH ′∇Ψ∈ 

, 

 1 N
1 1ˆq ( ) ( ) ( )

ˆ( , ) = ( , ) for any H ( ), ( ).N N NN N H L Hqq q
Cθ ψ θ θ ψ ψ −

′′ ′
∇Ψ ∇ ∈ ∇Ψ ≤ +

  

 

  
  (6.27)

By (6.25) and (6.26), we have 

 1 ( ) ( ) .N NqH Lqq
C ψ′ ′′

∇Ψ ≤
 

 (6.28)

 By (6.11), (6.27), and the divergence theorem of Gauss, we have 
0

0 0 0( ( ), ) = ( ( ), ) = ( ( ), ) = (D ( ( )) d , )j N j N j N j NK u K u K u iv D u ivuψ ψ µ∇ ∇Ψ −∇ ∇Ψ
   



0 2= ( ( ), ) (d , ) ,j N ND u ivuµ− ∇ Ψ + ∆Ψ
 

 and therefore by (6.28) 

 0 ( ) ( )| ( ( ), ) | ,N Nj N L LR q q
K u C uψ ψ

′
≤ ∇

 

which proves (6.24). This completes the proof of Lemma 6.7. 

Lemma 6.8 Let 1 < <q ∞ . For 2 ( )q ju H∈ Ω  and 3( )q jh H∈ Ω , let 1 1
1 ,0

ˆ( , ) ( ) ( )j q q q jK u h H H∈ Ω + Ω  be a unique solution of the 
weak Dirichlet problem (6.9). Then, we have 

11 ( )
( , )j L Bq j j

K u h
Ω ∩

1/ 1 1/ 1/ 1 1/2
2 3 2( ) ( ) ( ) ( ) ( )( )

( ).
q q q q

L H Lq j q j q j H HL q j jq j
C u h u u h h− −

Ω Ω Ω Ω ΩΩ
≤ ∇ + + ∇ ∇ +

Here, the constant C  depends on q  and KC . 

Remark 6.9 By Young’s inequality, we have 

 2
3 211 ( ) ( ) ( )( ) ( )

( , ) ( ) ( )j H L HL B q j q j q jLq j q jj
K u h u h C u hεε

Ω Ω ΩΩ ∩ Ω
≤ ∇ + + ∇ +  (6.29)

 for any (0,1)ε ∈  with some constant ,qCε  depending on ε  and q . 

Proof: For a proof, see Lemma 3.4 in Shibata42. To prove (6.23), we divide 1
2 ( )λV  into two parts as 1 1 1

2 21 22( ) = ( ) ( )λ λ λ∇ +V V V  
where

1 0 0 1 0 1
21 0 0 1 1 1

=1 =1
( ) = ( ( ) , ( ) ) ( ( ) ) ( ( ) , ( ) )),p p j j j j j j j j j j

j j
F K F B F K F K F Fλ λ λ ζ λ ζ ζ λ ζ λ ζ

∞ ∞

− −∑ ∑  V A S S H

 
1 0 0 1 0 1

22 0 0 1 1 1
=1 =1

( ) = ( ) ( ( ) ) ( ) ( ( ) , ( ) )).j j j j j j j j j j
j j

F K F K F Fλ ζ λ ζ ζ λ ζ λ ζ
∞ ∞

∇ + ∇∑ ∑  V S S H

By (2.1), (2.2), (6.8), and (6.9), for any 1
0

ˆ ( )qHϕ ′∈ Ω  we have 1
21( , ) =F I IIφ Ω∇ ∇ −V , where

= (D ( D( ( ) ) d ( ( ) ), ) ,p pI iv F iv Fµ λ λ ϕ Ω−∇ ∇A A

 

.

0 0 1 1 1
0 0 1 1 1

=1 =1
= (( ) ( ( ) ), ( )) (( ) ( ( ) , ( ) ), )j j j j j j j j j j j

j j
II K F e K F Fζ λ ζ ϕ ζ λ ζ λ ζ ϕ

∞ ∞

Ω Ω∇ ∇ − + ∇ ∇∑ ∑  S S H

 
0 0 1 1 1

0 0 1 1 1
=1 =1

( ( ( ) ), ( ( ))) ( ( ( ) , ( ) ), ( ))j j j j j j j j j j j
j j

K F e K F Fλ ζ ζ ϕ λ ζ λ ζ ζ ϕ
∞ ∞

Ω Ω+ ∇ ∇ − + ∇ ∇∑ ∑  S S H

 
0 0 1 1 1

0 0 1 1 1
=1 =1

(( ) ( ( ) ), ) (( ) ( ( ) , ( ) ), ) .j j j j j j j j j j j
j j

K F e K F Fζ λ ζ ϕ ζ λ ζ λ ζ ϕ
∞ ∞

Ω Ω− ∇ ∇ − − ∇ ∇∑ ∑  S S H

Here and in the following, 0= ( )j je c ϕ  are constants given in Lemma 6.6. By the definition (6.17), we have

     0 0 0 0
0 1 0 1

=1
= (D ( D( ( ) ) d ( ( ) ), )j j j j j j N

j
I iv F iv Fµ ζ λ ζ ζ λ ζ ϕ

∞

−∇ ∇∑


 S S
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1 1 1 1
1 1

=1
(D ( D( ( ) ) d ( ( ) ), )j j j j j j

j
iv F iv Fµ ζ λ ζ ζ λ ζ ϕ

∞

Ω+ −∇ ∇∑  S S

 
0 0 0 0 0

0 1 0 1
=1

= ( D ( D( ( ) )) d ( ( ) ), )j j j j j j j N
j

iv F iv Fζ µ λ ζ ζ λ ζ ϕ
∞

− ∇ ∇∑


 S S

 
1 1 1 1 1

1 1
=1

( D ( ( ( ) F)) d ( ( ) F), ) ,j j j j j j j
j

iv D iv IIIζ µ λ ζ ζ λ ζ φ
∞

Ω+ − ∇ ∇ +∑  S S

where 

0 0 0 0
0 1 0 1

=1
= (D ( D( ( ) )) D ( D( ( ) )), )j j j j j j N

j
III iv F iv Fµ ζ λ ζ ζ µ λ ζ ϕ

∞

− ∇∑


 S S

 
0 0 0 0

0 1 0 1
=1

( d ( ( ) ) d ( ( ) ), )j j j j j j
j

iv F iv Fζ λ ζ ζ λ ζ ϕ
∞

Ω− ∇ − ∇ ∇∑  S S

 
1 1 1 1

1 1
=1

(D ( D( ( ) )) D ( D( ( ) )), )j j j j j j N
j

iv F iv Fµ ζ λ ζ ζ µ λ ζ φ
∞

+ − ∇∑


 S S

 

                           

1 1 1 1
1 1

=1
( d ( ( ) ) d ( ( ) ), ) .j j j j j j

j
iv F iv Fζ λ ζ ζ λ ζ ϕ

∞

Ω− ∇ − ∇ ∇∑  S S  (6.30)

 
Since 0 1

,0
ˆ( ) ( )N

j j qe Hζ ϕ ′− ∈  , and 1 1
,0

ˆ ( )j q jHζ ϕ ′∈ Ω , by (6.8) and (6.9), we have
0 0 0 0 0

0 1 0 1
=1

= ( D ( ( ( ) )) d ( ( ) ), )j j j j j j j N
j

II iv D F iv Fζ µ λ ζ ζ λ ζ φ
∞

− ∇ ∇∑


 S S

 
1 1 1 1 1

1 1
=1

( D ( ( ( ) )) d ( ( ) ), ) ,j j j j j j j
j

iv D F iv F IVζ µ λ ζ ζ λ ζ ϕ
∞

Ω+ − ∇ ∇ +∑  S S

where we have set
0 0 0 0

0 0 1 0 0 1
=1

= {2( ( ( ) )( ), ) ( ( ( ) )( ), )j j j j j j j j j
j

IV K F K F eλ ζ ζ φ λ ζ ζ φ
∞

Ω Ω∇ ∇ + ∆ −∑  S S

 
1 1 1 1 1 1

1 1 1 12( ( ( ) , ( ) )( ), ) ( ( ( ) , ( ) )( ), )j j j j j j j j j j j jK F F K F Fλ ζ λ ζ ζ ϕ λ ζ λ ζ ζ ϕΩ Ω+ ∇ ∇ + ∆   S H S S
0 0 2 0 0 0 0

0 1 0 1( ( ( ) ) : ( ), ) ( ( ( ) )( ), )j j j j j j j j jD F e D Fµ λ ζ ζ ϕ µ λ ζ ζ ϕΩ Ω− ∇ − − ∇ ∇ S S
0 0 0 0

0 1 0 1((d ( ) )( ), ) (d ( ) )( ), )j j j j j j jiv F e iv Fλ ζ ζ ϕ λ ζ ζ ϕΩ Ω+ ∆ − + ∇ ∇ S S
1 1 2 1 1 1 1

1 1 1 1( ( ( ) ) : ( ), ) ( ( ( ) )( ), )j j j j j j j jD F D Fµ λ ζ ζ ϕ µ λ ζ ζ ϕΩ Ω− ∇ − ∇ ∇ S S
1 1 1 1

1 1 1 1((d ( ) )( ), ) (d ( ) )( ), ) .j j j j j jiv F iv Fλ ζ ζ ϕ λ ζ ζ ϕΩ Ω+ ∆ + ∇ ∇ S S

Thus, we have 

 1
21( ( ) , ) = .F III IVλ φ Ω∇ ∇ +V  (6.31)

We let define operators ( )λL  and ( )λM  acting on ( )qF ∈ ΩY  by the following formulas: 

( )FλL
0 0 0 0

0 1 0 1
=1

= (D ( D( ( ) )) D ( D( ( ) ))j j j j j j
j

iv F iv Fµ ζ λ ζ ζ µ λ ζ
∞

−∑  S S

 
0 0 0 0

0 1 0 1
=1

( d ( ( ) ) d ( ( ) )j j j j j j
j

iv F iv Fζ λ ζ ζ λ ζ
∞

− ∇ − ∇∑  S S

 
1 1 1 1

1 1
=1

(D ( D( ( ) )) D ( D( ( ) ))j j j j j j
j

iv F iv Fµ ζ λ ζ ζ µ λ ζ
∞

+ −∑  S S

1 1 1 1 0 0
1 1 0 0 1

=1 =1
( d ( ( ) ) d ( ( ) ) 2 (( ) ( ( ) )j j j j j j j j j j

j j
iv F iv F K Fζ λ ζ ζ λ ζ ζ λ ζ

∞ ∞

− ∇ − ∇ + ∇∑ ∑  S S S

1 1 1 0 0 0
1 1 0 1

=1 =1
2 (( ) ( ( ) , ( ) ) ( D( ( ) )( )j j j j j j j j j j

j j
K F F Fζ λ ζ λ ζ µ λ ζ ζ

∞ ∞

+ ∇ − ∇∑ ∑  S H S

 
0 0 1 1 1 1 1

0 1 1 1 1
=1 =1 =1

(d ( ( ) )( ) ( ( ( ) )( ) (d ( ( ) )( );j j j j j j j j j j
j j j

iv F D F iv Fλ ζ ζ µ λ ζ ζ λ ζ ζ
∞ ∞ ∞

+ ∇ − ∇ + ∇∑ ∑ ∑  S S S



On the maximal Lp- Lq theory arising in the study of a free boundary 
problem for the Navier-Stokes equations

 44

<< ( ) , >>Fλ φM
0 0 2 0 0 0

0 1 0 1
=1 =1

= ( ( ( ) ) : ( ), ) (d ( ( ) )( ), )j j j j j j j j j
j j

D F e iv F eµ λ ζ ζ ϕ λ ζ ζ ϕ
∞ ∞

Ω Ω− ∇ − + ∆ −∑ ∑ S S

0 0 1 1 2 1
0 0 1 1

=1 =1
( ( ( ) )( ), ) ( D( ( ) ) : ( ), )j j j j j j j j j

j j
K F e Fλ ζ ζ ϕ µ λ ζ ζ ϕ

∞ ∞

Ω Ω+ ∆ − − ∇∑ ∑ S S

 
1 1 1 1 1

1 1 1
=1 =1

(d ( ( ) )( ), ) ( ( ( ) , ( ) )( ), ) .j j j j j j j j j
j j

iv F K F Fλ ζ ζ ϕ λ ζ λ ζ ζ ϕ
∞ ∞

Ω Ω+ ∆ + ∆∑ ∑  S S H

Here and in the following, 1
,0

ˆ ( )qW − Ω  denotes the dual space of 1
,0

ˆ ( )qH ′ Ω , and << , >>⋅ ⋅  denotes the duality between 1
,0

ˆ ( )qW − Ω  
and 1

,0
ˆ ( )qH ′ Ω .

Moreover, by (2.2) and (6.9), for x∈Γ  we have 
1

21( ) =< D( ( ) )n,n > ( ) ( ) d ( )p p pF F F iv Fλ µ λ δ λ λΓ− + ∆ −SV A B A

1 1 1 1 1 1
1 1

=1
{< ( ( )D( ( ) )n ,n > ( ) ( ) d ( ) }j j j j j j j j j j jj

j
x F x F iv Fζ µ λ ζ δ λ ζ λ ζ

∞

Γ− − ∆ −∑   S H S

 
1 1 1 1 1 1

1 1
=1 =1 =1

= < D( ( ) )n,n > ( ) ( ) d ( ( ) )j j j j j j j j j
j j j

F F iv Fµ ζ λ ζ δ ζ λ ζ ζ λ ζ
∞ ∞ ∞

Γ− + ∆ −∑ ∑ ∑  S B H S

 
1 1 1 1 1 1

1 1
=1

{< ( ( )D( ( ) ) , > ( ) ( ) d ( ) }.j j j j j j j j j j jj
j

x F n n x F iv Fζ µ λ ζ δ λ ζ λ ζ
∞

Γ− − ∆ −∑   S H S

Thus, we define an operator ( )b λL  acting on ( )qF ∈ ΩY  by letting 

 1 1 1 1 1 1
1 1

=1
( ) = [< ( )(D( ( ) ) D( ( ) )) , > ( ( ) )b j j j j j j j j j

j
F x F F n n Fλ µ ζ λ ζ ζ λ ζ ζ λ ζ

∞

− −∑   L S S B H

 
1 1 1 1 1 1

1( ( ( ) ) ( ) ) ( ) ( ) ],j j j j j j j j jF F Fδ ζ λ ζ ζ λ ζ ζ λ ζΓ Γ− ∆ − ∆ − ∇  H H S

 and then, 1
21( ) = ( )bF Fλ λV L  on Γ .

We now prove the R  boundedness of operator families ( )λL , ( )λM  and ( )b λL . We first prove that 

 1/2
1 , 0,ˆ 0( ( ), ( )),0

({( ) ( ) | }) ( )q bWq q
C rτ εσ λτ λ λ ε λ−

−Ω Ω
∂ ∈Λ ≤ +





L Y
R M  (6.32)

for = 0,1 . In fact, if we set
0 0 0 2 0 0 0

0 1 0 1<< ( ) , >>= ( ( )D( ( ) ) : ( ), ) (d ( ( ) )( ), )j j j j j j j j j jF x F e iv F eλ ϕ µ λ ζ ζ ϕ λ ζ ζ ϕΩ Ω− ∇ − + ∆ − M S S
0 0

0 0 1( ( ( ) )( ), ) ,j j j j jK F eλ ζ ζ ϕ Ω+ ∆ −S
1 1 1 2 1

1<< ( ) , >>= ( ( ) ( ( ) ) : ( ), )j j j j jF x D Fλ ϕ µ λ ζ ζ ϕ Ω− ∇M S
1 1 1 1 1

1 1 1(d ( ( ) )( ), ) ( ( ( ) , ( ) )( ), ) ,j j j j j j j j jiv F K F Fλ ζ ζ ϕ λ ζ λ ζ ζ ϕΩ Ω+ ∆ + ∆  S S H

then, by Lemma 6.6, Lemma 6.7 and (6.29), we have
0 0

00 ( )2 ( )
|<< ( ) , >>| ( ) ,j M j j N L BqL jq

F C Fλ ϕ λ ζ ϕ
′

≤ ∇ ∇


M S

1 1 1
1 2 3( ) ( )

|<< ( ) , >>| { ( ( ) )j j j j jH Hq j q j
F F Fλ ϕ ε ζ λ ζ

Ω Ω
≤ + M S H

1 1
1, 1 1 2 ( )2 ( ) ( )

( ( ) )} .M j j j j L BqH H jq j q j
C F Fε ζ λ ζ ϕ

∩ΩΩ Ω
+ + ∇ S H

By (6.3), we have 

 0 1 ( )( ) ( )=1 =1

q q q
q LqL B L Bq qj jj j

Cϕ ϕ ϕ
∞ ∞

′ ′ ′
′ Ω′∩Ω′ ′

∇ + ∇ ≤ ∇∑ ∑
for any 1

,0
ˆ ( )qHϕ ′∈ Ω . By (6.13), (6.3), and Proposition (6.5), we have

0 1 1
0 1 1 2 3( ) ( ) ( )=1 =1

( ) ( ( ) ( ) )
q q q

j j j j j jNL H Hq q j q jj j
F F Fλ ζ λ ζ λ ζ

∞ ∞

Ω Ω
∇ + +∑ ∑



  S S H

 
0 1

1 ( )( ) ( )=1 =1
( ) < .

q q qq q
b j j b qN qL CYq q jj j

r F F r C Fζ ζ
∞ ∞

ΩΩ
≤ + ≤ ∞∑ ∑



 

Y

Thus, by Proposition 6.2, 0 1
=1 =1( ) = ( ) ( )j jj jF F Fλ λ λ∞ ∞+∑ ∑M M M  exists in 1

,0
ˆ ( )qW − Ω  for any ( )qF ∈ ΩY  and 
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0 1
0 1 11 2ˆ 2( ) ( ) ( ),0 =1 =1

( ) ( ) ( )
q qq q q

j j j jM NW L Hq q jq j j
F C F Fλ λ ζ ε λ ζ

∞ ∞

− Ω Ω
≤ ∇ +∑ ∑



 M S S

 
1 1 1 1

1, ,3 1 12 2( ) ( ) ( )=1 =1 =1
( ) ( ) ( ) ( ) .

q q qq q q
j j j j j j j jM MH H Hq j q j q jj j j

F F C F C Fε εε λ ζ λ ζ λ ζ λ ζ
∞ ∞ ∞

Ω Ω Ω
+ + +∑ ∑ ∑   H S H

Analogously, by Proposition 6.2 we have

0
0 121ˆ=1 =1 =1( ) ( ),0

( ) ( ) ( ) ( )
q qn n

q
j jM

NjW Lqq

r u F C r u Fλ λ ζ
∞

− Ω

≤ ∇∑ ∑ ∑
     

 



M S

 
1 1

1
2 3=1 =1 =1 =1( ) ( )

( ) ( ) ( ) ( )
q qn n

q q
j j j j

j jH Hq j q j

r u F r u Fε λ ζ ε λ ζ
∞ ∞

Ω Ω

+ +∑ ∑ ∑ ∑
     

 

 S H

 
1 1

1, ,2 21 1=1 =1 =1 =1( ) ( )

( ) ( ) ( ) ( ) .
q qn n

q q
j j j jM M

j jH Hq j q j

C r u F C r u Fε ελ ζ λ ζ
∞ ∞

Ω Ω

+ +∑ ∑ ∑ ∑
     

 

 S H

Noting that 1 1=j j jB BΩ∩ Ω ∩ , by (6.13), (6.5), Proposition 6.5, and Proposition (3.4), we have

 
1 1/2 0

0 120 01ˆ=1 =1 =1( ) ( ),0

( ) ( ) ( )
q qn n

q q q
b jM

NjW Lqq

r u F du C r r u F duλ λ ζ
∞

−

− Ω

≤∑ ∑ ∑∫ ∫   

 

 

 M

 
1 11 /2 1

0, 20 0
=1 =1 =1 =1( ) ( )

( ) ( )
q qn n

q q q q q
b j b jM

j jq j q j

r r u F du C r r u F duεε ζ λ ζ
∞ ∞

−

Ω Ω

+ +∑ ∑ ∑ ∑∫ ∫   

 

  

Y Y 
1/2

0, 2 0
=1 ( )

( ) ( ) ,
qn

q q q q
q bM

q

C C r r u F duεε λ−

Ω

≤ + ∑∫  





Y

which shows (6.32). Analogously, we can prove

 

1/2
0, 20( ( ), ( ) )

1/2
1 0, 20( ( ), ( ) )

({( ) ( ) | }) ,

({( ) ( ) | })

N M bLq q

N b M bHq q

C r

C r

τ σ λ

τ σ λ

τ λ λ λ

τ λ λ λ

−
Ω Ω

−
Ω Ω

∂ ∈Λ ≤

∂ ∈Λ ≤













L Y

L Y

R L

R L
 (6.33)

for = 0,1 .

We now use the following lemma.

Lemma 6.10: Let 1 < <q ∞ . Then, there exists a linear map E  from 1
,0

ˆ ( )qW − Ω  into ( )N
qL Ω  such that for any 1

,0
ˆ ( )qF W −∈ Ω

, 1ˆ( ) ( ),0
( ) L Wq q
F C F −Ω Ω

≤E  and 

 1
q ,0

ˆ< , >= ( ( ), ) for all H ( ).F Fϕ ϕ ϕ ′Ω∇ ∈ ΩE

Proof: The lemma follows from the Hahn-Banach theorem by indentifying 1
,0

ˆ ( )qH ′ Ω  with a closed subspace of ( )N
qL ′ Ω  via 

the mapping: ϕ ϕ∇ . Applying Lemma 6.10 and using (6.31) and (6.32), we have 

 1 1
21 q ,0

ˆ( ( ) , ) = ( ( ) ( ( ) ), ) for all H ( ),F F Fλ ϕ λ λ ϕ ϕ ′Ω Ω∇ ∇ + ∇ ∈ ΩV L E M  (6.34)

subject to 1
21( ) = ( )bF Fλ λV L  on Γ , and 

 1/2
, 0, 0( ( ), ( ) )

({( ) ( ) | }) ( ) ,N q bLq q
C C rτ εσ λτ λ λ ε λ−

Ω Ω
∂ ∈Σ ≤ +







L Y
R E M  (6.35)

where ( )λE M  denotes a bounded linear operator family acting on F  by ( ) = ( ( ) )F Fλ λE M E M . By Remark 
1.5, we have 1

21 0( ) = ( ) ( ( ) ( ( ) ) ( ) )b bF F F F Fλ λ λ λ λ+ + −∇V L K L E M L , and so by (6.33) and (6.35), we see that 
1

21 , 0
( ) H ( , ( ( ), ( ) ))N

q qol Lσ λλ∇ ∈ Σ Ω Ω


V L Y  and 

 1 1/2
21 , 0, 20( ( ), ( ) )

({( ) ( ) | }) ( )N q M bLq q
C C rτ εσ λτ λ λ ε λ−

Ω Ω
∂ ∇ ∈Σ ≤ +





L Y
R V  (6.36)

for = 0,1 .

Finally, by Lemma 6.7, (6.29), (6.5), and Proposition 6.2, we have

 1
22 , 0

( ) H ( , ( ( ), ( ) )),N
q qol Lσ λλ ∈ Σ Ω Ω



V L Y
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 1 1/2
21 0, 0( ( ), ( ) )

({( ) ( ) | }) ( )N q bLq q
C C rτ εσ λτ λ λ ε λ−

Ω Ω
∂ ∈Σ ≤ +





L Y
R V

for = 0,1 , which, combined with (6.36) and the formula: 1 1 2
2 21 22( ) = ( ) ( )λ λ λ∇ +V V V , leads to (6.23).

Proof of theorem 2.1, existence part
Choosing ε  so small that , 1 / 4q r bC r ε ≤ , and 0λ  so large that 

 1 1/2
, 0 02 ( ) 1 / 4q b MC r C ε σλ γ λ− −+ ≤   (6.37)

in (6.20), we have 

 ( ( )) , 0
({( ) F ( ) | }) 1 / 2q τ λ σ λτ λ λΩ ∂ ∈Λ ≤

L YR V  (6.38)

for = 0,1 . Let *λ  be a large number for which 2
* ,2(8 )q b MC r C ελ ≥ , and then setting 0 *= σλ λ γ , we have (6.37). By (6.37), 

1
=1( F ( )) = (F ( )) j

jI λ λλ λ∞−− ∑V V  exists in , 0
H ( , ( ( )))qol σ λΣ Ω



L Y  and 

 1
( ( )) , 0

({( ) (I F ( )) | }) 4q τ λ σ λτ λ λ−
Ω ∂ − ∈Λ ≤

L YR V  (6.39)

for = 0,1 . Moreover, by (6.19) and (6.38)

 
( ) ( )F ( )( , ,h) (1 / 2) ( , , ) .

q q
V f d F f d hλ λλ

Ω Ω
≤Y Y

 (6.40)

 Since 
( )( , , )

q
F f d hλ ΩY

 gives an equivalent norm in ( )q ΩY  for = 0λ / , by (6.40) 1
=0( ( )) = ( ) j

jI V Vλ λ∞−− ∑  exists in ( ( ))q ΩL Y

. Since = ( )F ( , , )pu f d hλλA  and = ( ) ( , , )ph F f d hλλB  satisfy Eq. (6.16), setting 

 1 1= ( )F (I ( )) ( , , ), = ( )( )F (I ( )) ( , , ),p pv V f d h V f d hλ λλ λ ρ λ λ λ− −− −A A

we see that 2 ( )N
qv H∈ Ω , 3( )qHρ ∈ Ω  and v  and ρ  satisfy the equations: 

 

 

D ( D( ) ( , )I) = in ,
= on ,

( D( ) ( , )I (( ) )I) = on ,

v iv v K v f
A v n v d
v K v n h
σ

λ µ ρ
λρ ρ
µ ρ δ ρ

Γ

Γ

− − Ω
 + ⋅∇ − ⋅ + Γ
 − − + ∆ Γ

F
B

 (6.41)

Moreover, by (6.19) we have 1 1F (I ( )) = ( ( ))V I F Fλ λ λλ λ− −− − V . Thus, setting

 1 1( ) = ( )( ( )) , ( ) = ( )( ( ))r p r pI F I Fλ λλ λ λ λ λ λ− −− −A A V H B V

we see that = ( ) ( , , )rv F f d hλλA  and = ( ) ( , , )r F f d hλρ λH  are solutions of Eq.(1.6). Since we may assume that * 1σλ γ λ≥  in 
(6.18), by (6.18) and (6.39), we have 

/2
2 , *( ( ), ( ) )

({( ) ( ( )) | }) ,j
j r q bNHq q

C rτ σ λ γστ λ λ λ−Ω Ω
∂ ∈Λ ≤

L Y
R A

3 , *( ( ), ( ))
({( ) ( ( )) | }) ,k

k r q bHq q
C rτ σ λ γστ λ λ λ−Ω Ω

∂ ∈Λ ≤

L Y
R H

for = 0,1 , = 0,1,2j  and = 0,1k . This completes the proof of the existence part of Theorem 2.1.

Uniqueness, a proof of theorem 1.10
In this subsection, we shall prove Theorem 1.10. Let 2 ( )N

qu H∈ Ω , 1 1
,0

ˆ( ) ( )q qq H H∈ Ω + Ω , and 3( )qh H∈ Ω  satisfy the 
homogeneous equations: 

 
D ( D( ) I), d = 0 in ,

= 0 on ,
( D( ) ( ) )I) = 0 on ,

u iv u q iv u
h u n

u I h n

λ µ
λ
µ δ Γ

− − Ω
 − ⋅ Γ
 − − ∆ Γ q

 (6.42)

where δ  is a positive constant. We shall prove that = 0u  and = 0h  below. Let 0λ  be a large positive number such that for 
any , 0ε λλ ∈Σ  the existence theorem holds with = ( 1) /q q q′ − . Let ( )qJ ′ Ω  be a solenoidal spaces defined in (1.7) and let 
g  be any element in ( )qJ ′ Ω . Let 2 ( )N

qv H ′∈ Ω , 1 1
,0

ˆ( ) ( )q qH H′ ′∈ Ω + Ωp , and 3 ( )qHρ ′∈ Γ  be solutions to the equations: 

 

 

D ( D( ) )I) = in ,
= 0 on ,

( D( ) )I) (( ) ) = 0 on .

v iv v p g
n v
v n n

λ µ
λρ
µ τ δ ρΓ

− − Ω
− ⋅ Γ

− − + ∆ Γp

 (6.43)

Let 1 1
,0

ˆ( , ) ( ) ( )q qK v H Hρ ′ ′∈ Ω + Ω  be a solution of the weak Dirichlet problem:
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 1
q,0

ˆ( ( , ), ) = (D ( D( )) d v, ) for any H ( ),K v iv v ivρ ϕ µ ϕ ϕΩ Ω∇ ∇ −∇ ∇ ∈ Ω  (6.44)

subject to ( , ) =< D( ) , > dK v v n n ivvρ µ δ ρΓ− ∆ −  on Γ . And then, as was seen in Subsect. 2.1, = ( , )K v ρp . This facts yields 
that ( )qv J ′∈ Ω . In fact, for any 1

,0
ˆ ( )qHϕ ∈ Ω , we have

 

 

0 = (g, ) = (v, ) (D ( D(v)), ) ( (v, ), )
= (v, ) ( d v, ) .

iv K
iv

ϕ ϕ ϕ ϕ
ϕ ϕ

λ µ ρ
λ

Ω Ω Ω Ω

Ω Ω

∇ ∇ − ∇ + ∇ ∇
∇ − ∇ ∇

 (6.45)

 Since 1 1
,0 ,0

ˆ( ) ( )q qH HΩ ⊂ Ω , for any 1
,0 ( )qHϕ ∈ Ω , we have 

 0 = (d v, ) ( d v, ) .iv ivλ ϕ ϕΩ Ω+ ∇ ∇

Choose 0 > 0λ  larger if necessary, we may assume that the uniquness of the resolvent problem for the weak Laplace-
Dirichlet operator holds, and so d v = 0iv . Putting this and (6.45) together gives ( , ) = 0v ϕ Ω∇  for any 1

,0
ˆ ( )qHϕ ∈ Ω , that is 

v ( )qJ ′∈ Ω . Moreover, by Definition 1.6, ( )qu J∈ Ω .

Since 1 1
,0

ˆ( ) ( )q qH H′ ′∈ Ω + Ωp , we write 1 1
1 2 ,0

ˆ= ( ) ( )q qA A H H′ ′+ ∈ Ω + Ωp . And then, by the divergence theorem of Gauss 

 1( , ) = ( , ) (d , ) = ( , )u u n ivu A u nΩ Γ Ω Γ∇ ⋅ − ⋅p p p

because ( )qu J∈ Ω , 1
1 ( )qA H∈ Ω , and 2 = 0A  on Γ . Thus, by the divergence theorem of Gauss we have

(u,g) = (u, ) ( ,D ( D(v) I))v u ivλ µΩ Ω− − p

= (u,v) (u,( D( ) ) ) ( D(u),D(v))
2

v n µλ µ Γ Ω− − +p

= (u,v) (u n, ) ( ( ),D(v)) .
2

D uµλ δ ρΓ Γ Ω− ⋅ ∆ +

Since = u nhλ ⋅ , we have 

 (u,g) = (u,v) ( , ) ( D(u),D(v)) .
2

h µλ λδ ρΩ Ω Γ Γ Γ Ω+ ∇ ∇ +  (6.46)

Analogously, we have

 0 = ( D ( D(u) I), ) = (u,v) ( , ) ( D(u),D(v)) ,
2

u iv v h µλ µ λ λδ ρΩ Ω Γ Γ Γ Ω− − + ∇ ∇ +q

which, combined with (6.46), leads to 
 q( , ) = 0 for any g J ( ).u g ′Ω ∈ Ω  (6.47)

For any 0 ( )Nf C∞∈ Ω , let 1
,0

ˆ ( )qHψ ′∈ Ω  be a solution to the variational equation ( , ) = ( , )f ϕ ψ ϕΩ Ω∇ ∇ ∇  for any 1
,0

ˆ ( )qHϕ ∈ Ω

. Let =g f ψ−∇ , and then ( )qg J ′∈ Ω  and (u, ) = 0ψ Ω∇ . Thus, by (6.47), (u, ) = (u, ) = 0f gΩ Ω , which, combined with 
the arbitrariness of the choice of f , leads to u = 0 . And then, by the second equation of (6.42) yields that = 0h . This 
completes the proof of Theorem 1.10.

A priori estimate
In this section, we consider the uniqueness. If = 0Aσ , v = 0F , and = 0ρB , then, as was seen in Subsec:6.5, we can 
show the uniqueness of solutions by using the existence of solutions of the dual problem. But, in the general case, we can 
not find a suitable dual problem, and so to prove the uniqueness we derive a priori estimates. For this purpose, we have 
to restrict our domain Ω  slightly. We introduce the notion of finite covering domains.

Definition 7.1: Let = 2k  or 3 and let Ω  be a domain in N


. We say that Ω  is a uniformly kC  domain whose inside is 
finitely covering if Ω  is a uniformly kC  domain and the following condition holds: v Let =1{ }i

j jζ ∞  ( = 0,1)i  be the partition of 
unity given in Proposition 6.1. Let

0 1

=1 =1
= {( s ) ( s )} .j j

j j
upp uppζ ζ

∞ ∞

∇ ∪ ∇ ∩Ω
 

O

Then, there exist a finite number of subdomains jO  ( = 1, , )j ι  such that 
=1 jj

ι
⊂


O O  and each jO  satisfies one of the 
following conditions:

a) There exists an > 0R  such that j R⊂ ΩO , where = { || |< }R x x RΩ ∈Ω ,

b) There exist a translationτ , a rotation A , a domain 1ND −⊂  , a coordinate functions ( )a x′  defined for Dx′∈ , and 
a positive constant b  such that 0 ( ) <a x b′≤  for x D∈ , ( ) { = ( , ) | D, ( ) } ( ),j N NA x x x x a x x bτ τ′ ′ ′⊂ ∈ ≤ ≤ ⊂ Ω O A

 
{ = ( , ) | , = ( )} ( ).N

N Nx x x x D x a x τ′ ′ ′∈ ∈ ⊂ Γ A
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Where, for any subset E  of N


, ( ) = { | }E Ax x E∈A  with some orthogonal matrix A  and ( ) = { | }E x y x Eτ + ∈  with some 
Ny∈ . 

Example 7.2: Let Ω  be a domain whose boundary Γ  is a kC  hypersurface. If Ω  satisfies one of the following conditions, 
then Ω  is a uniformly kC  domain whose inside is finite covering.

(1) Ω  is bounded, or Ω  is an exterior domain, that is, = \NΩ  O  with some bounded domain O .

(2) = N
+Ω 

 (half space), or Ω  is a perturbed half space, that is, there exists an > 0R  such that =R N RB B+Ω∩ ∩
, where 

= { || |> }R NB x x R∈ .

(3) Ω  is a layer L  or perturbed layer, that is, there exists an > 0R  such that =R RB L BΩ∩ ∩ . Here 
1

1 1= { = ( , ) | = ( , , ) , < < }N N
N N NL x x x x x x R a x b−

−′ ′∈ ∈ 
 for some constants a  and b  for which <a b .

(4) Ω  is a tube, that is, there exists a bounded domain D  in 1N −


 such that = D RΩ × . 

(5) There exist an > 0R  and several orthogonal transforms, iR  ( = 1, ,i M ), such that 0=1
= ( )MR N R

ii
B R BΓ∩ ∩



R .

(6) There exist an > 0R , half tubes, iT  ( = 1, , )i M , and orthogonal transforms, iR  ( = 1, , )i M , such that 

=1
= ( )MR R

i ii
B T BΩ∩ ∩



R , where what iT  is a half tube means that = [0, )i iT D × ∞  with some bounded domain iD  of 
1NR − . 

 In this section, under the finite covering assumption, (6.2), and (??), we prove a priori estimates of Eq. (2.4), and as a 
result, we have the uniqueness of solutions. The following theorem is the main result of this section.

Theorem 7.3: Let 1 < <q ∞ . Let Ω  be a uniformly 3C  domain whose inside is finite covering. Then, there exists a 0 > 0λ  
such that for any , 0σ λ γσλ ∈Λ  and 2 3(u, ) ( ) ( )N

q qh H H∈ Ω × Ω  satisfying Eq. (2.4), we have 

 

 
1/2

1 2 2 3( ) ( ) ( ) ( ) ( )

1/2
2 1/ 1( ) ( ) ( ) ( )

| | | | | |

{ | | }.

L H H H Hq q q q q

qL W L Hq q qq

u u u h h

C f d h h

λ λ λ

λ

Ω Ω Ω Ω Ω

−Ω Γ Ω Ω

+ + + +

≤ + + +
 (7.1)

 

Corollary 7.4: Let 1 < <q ∞ . Let Ω  be a uniformly 3C  domain whose inside is finite covering. Then, there exists a 0 > 0λ  
such that the uniqueness holds for Eq. (1.6) for any , 0σ λ γσλ ∈Λ . 

In what follows, we shall prove Theorem 7.3. We use the same notation as in Sect.6. Let =i i
j ju uζ  and 1=j jh hζ . And then, 

0
ju  satisfy the equations: 

 0 0 0 0 0 N
0u D ( ( )D( ) (u )I) = in .j j j j j jiv x u K fλ µ− −   (7.2)

And also, 1
ju  and jh  satisfy the equations:

 

 

1 1 1 1 1 1
1 j

1
j

1 1 1 1 1
1 j

D ( ( )D(u ) ( , )I) = in ,

( ) n u = on ,

( ( )D(u ) (u , )I) ( )( ) = on .

j j j j j j j

j j j j j jj

j j j j j j j j j jj

u iv x K u h f

h A x h d

x K h n x h n h

σ

λ µ

λ

µ δ

Γ

Γ

 − − Ω
 + ⋅∇ − ⋅ Γ


− − ∆ Γ

 (7.3)

Where, we have set
0 0 0 0 0 0= D ( ( )D(u)) D ( ( )D( u)) D (( ( ) ( ))D( u))j j j j j jf f iv x iv x iv x xζ ζ µ µ ζ µ µ ζ+ − + −

0 0
0( (u, ) ( u));j j jK h Kζ ζ− ∇ −∇

1 1 1 1 1 1= D ( ( )D( )) D ( ( )D( )) D (( ( ) ( ))D( ))j j j j j jf f iv x u iv x u iv x x uζ ζ µ µ ζ µ µ ζ+ − + −
1 1 1

1( (u, ) ( u, ));j j j jK h K hζ ζ ζ− ∇ −∇
1 1 1 1 1 1 1= ( ( ) ( )) ( ) ( ( )) ;j j j j j j j j jj j jd d A x A x h A x h h uσ σ σζ ζ ζ ζ ζΓ Γ Γ− − ⋅∇ − ⋅ ∇ −∇ − F

1 1 1 1 1 1 1 1 1= { ( ( ) ( ))D( ) ( )( D( ) D( ))} ( (u, ) ( u, ))j j j j j j j j j jh h x x u x u u n K h K h nζ ζ µ µ µ ζ ζ ζ ζ ζ− − + − + −
1 1 1 1 1 1( )n ( ( ) ( ))( )n ( )( ( ))n.j j j j j jh x x h x h hζ ζ δ δ δ ζ ζΓ Γ Γ+ + − ∆ + ∆ − ∆B

 Set 

 /2
1 2 2 3( ) ( ) ( ) ( ) ( )

( , ) =| | | | | | .q q q q qq q q
Lq H H H Hq q q q

E u h u u u h hλ λ λ λ
Ω Ω Ω Ω Ω
+ + + +
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Employing the similar argument to that in Subsec. 6.3, for any positive number ω  we have 

 

 

0 1 /2
2 1/ 1( ) ( ) ( )( ) ( )=1

/2
2 1/ 1 2( ) ( ) ( ) ( )( )

/2
11 2 3 ( ))( ) ( )

/2
1, ( )2

( , ) ( f f | | h h }

{ f | | h h h

( )( h | | h )

( | |

q q q q qq
qj j j j jN W L HL L j q j q jqq q jj

q q q qq q
qL Lq q H HW q qq

q qq q q
HqH Hq q

q
M Hq

E u h C d

C d

M u

C u

λ

σ

ω

λ

λ γ

ω λ

λ

∞

− Γ Ω ΩΩ

−Ω Ω Ω ΩΓ

ΩΩ Ω

Ω

≤ + + + +

≤ + + + +

+ + + +

+ +

∑


/2
2 1( ) ( )( ) ( )

h | | h ) (u,h) }.q q qq
L Lq qH Hq q

u Kλ
Ω Ω Ω
+ + + O

 (7.4)

Where, , 2MCω  is a constant depending on ω  and 2M , and we have used the assumption that 
0 1

=0 =1
( s ) ( s ) = .j j

j j
upp uppζ ζ

∞ ∞

∇ ∪ ∇
 

O

To estimate 
( )( , ) Lq

K u h O
, we need the following Poincarés’ type lemma.

Lemma 7.5: Let 1 < <q ∞  and let Ω  be a uniformly 2C  domain whose inside is finite covering. Let O  be a set given in 
Definition 7.1. Then, we have

 1
, q,0( ) ( )

ˆfor any H ( )qL Lq q
Cϕ ϕ ϕ

Ω
≤ ∇ ∈ ΩOO

with some constant O,qC  depending solely on O  and q .

Proof: A proof of this lemma is given in Appendix 11 below. We now prove that for any > 0ω  there exists a constant , 2MCω  
depending on ω  and 2M  such that

 2 3 1 2,( ) ( ) ( ) ( ) ( )2(u,h) ( u h ) ( u h ).ML H H H Hq q q q q
K Cωω

Ω Ω Ω Ω
≤ + + +O

 (7.5)

For this purpose, we estimate | ( ( , ), ) |K u h ψ Ω  for any 0 ( )Cψ ∞∈ O . By Lemma 7.5,

 ,( ) ( ) ( ) ( )| ( , ) | qL L L Lq q q q
Cϕ ψ ϕ ψ ϕ ψΩ ′ ′

≤ ≤ ∇OO O O O

for any 1
,0

ˆ ( )qHϕ ∈ Ω . Thus, by the Hahn-Banach theorem, there exists a ( )N
qg L ′∈ Ω  such that ,( ) ( )qL Lq q

g C ψ′Ω′ ′
≤ O O

 and

 ( , ) = ( , )gϕ ψ ϕΩ Ω∇  (7.6)

 for any 1
,0

ˆ ( )qHϕ ∈ Ω . In particular, d g =iv ψ− , and therefore 
( ) ( )d g Lq Lq

iv ψ′ Ω ′
≤ O

. By the assumption of the unique 

existence of solutions of the weak Dirichlet problem and its regularity theorem, Theorem 10.1 in Appendix 10 below, there 

exists a 1
,0

ˆ ( )qH ′Ψ∈ Ω  such that 2 ( )N
qL∇ Ψ∈ Ω , Ψ  satisfies the weak Dirichlet problem:

 1
q,0

ˆ( , ) = ( , ) for any H ( )gϕ ϕ ϕΩ Ω∇Ψ ∇ ∇ ∈ Ω  (7.7)

 and the estimate: 

 1 ,( ) ( ) .qH Lqq
C ψ

Ω ′′
∇Ψ ≤ O O  (7.8)

Let = (u,h) {< D(u) , > ( ) d u}L K n n h ivµ σ Γ− − + ∆ −B , and then 1
,0

ˆ ( )qL H∈ Ω . Thus, by (7.6), (7.7) with = Lϕ  and the 
divergence theorem of Gauss, we have 

| ( , ) |=| ( , ) |=| ( , ) |L L g Lψ Ω Ω Ω∇ ∇Ψ ∇

| (D ( ( )) d , ) |iv D u ivuµ Ω≤ −∇ ∇Ψ

| ( {< D(u)n,n > ( ) d u}, ) |h ivµ σ Γ Ω+ ∇ − + ∆ − ∇ΨB
2 2

2( ) ( ) ( ) ( )2 ( ) ( )
{( u ( , , ) ) ( u ) }.M L L L Hq q q qL Lq q

C h h h h
Γ Γ Ω ΩΓ Ω

≤ ∇ + ∇ ∇ ∇Ψ + ∇ + ∇ Ψ

Using the interpolation inequality: 1/ 1 1/
( ) ( ) ( )

q q
L L Lq q q

v C v v −
Γ Ω Ω
≤ ∇  and (7.8), we have

 2
3 2,( ) ( ) ( ) ( )2( )

| ( , ) | { ( u ) ( u )} ,MH L H Lq q q qLq
L h C hωψ ω ψΩ Ω Ω Ω ′Ω

≤ ∇ + + ∇ + O

which leads to 

 2
3 2,( ) ( ) ( ) ( )2( )

( u ) ( u ).ML H L Hq q q qLq
L h C hωω

Ω Ω Ω ΩΩ
≤ ∇ + + ∇ +

Thus, we have (7.5).
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Putting (7.4) and (7.5) together and choosing ω  and 1M  small enough and 0λ  large enough, we have (7.1). This 
completes the proof of Theorem 7.3.

Maximal Lp - Lq regularity
In this section, we prove Theorem 1.9. As an auxiliary problem, we consider the following equations: 

 

 =0 0

D ( D( ) I) = F in (0,T),
d u = = d G in (0,T),
( D(u) I)n = H on (0,T),
u | = on .

t

t

u iv u
iv G iv

u

µ

µ

∂ − − Ω×
 Ω×
 − Γ×
 Ω

p

p
 (8.1)

 The corresponding generalized resolvent problem to Eq. (8.1) is 

 

 

D ( D(v) I) = in ,
d v = = d g in ,
( D(v) I)n = on .

v iv f
iv g iv

h

λ µ

µ

− − Ω
 Ω
 − Γ

q

q

 (8.2)

The following theorem was essentially proved by Shibata34 and can be proved by using the same argument as in the proof 
of Theorem 1.7.

Theorem 8.1 Let 1 < <q ∞  and 0 < < / 2ε π . Assume that the following conditions are satisfied: 

i. Ω  is a uniformly 2C  domain. 

ii. µ  is a real valued function satisfying the assumption (1.2). 

iii. The weak Dirichlet problem is uniquely solvable on 1
,0

ˆ ( )qH Ω  and 1
,0

ˆ ( )qH ′ Ω . 

Set 
1( ) = {( , ,g,h) | f ( ) ,( ,g) D ( ),h ( ) },N N

q q q qX f g L g I H′ Ω ∈ Ω ∈ Ω ∈ Ω

1 1
1 3 4 5 6 7 1 3 7 4 5 6( ) = {( , , , , , ) | , , ( ) , ( ) , ( ), ( ) }.N N N

q q q q qF F F F F F F F F L F H F L F H′ Ω ∈ Ω ∈ Ω ∈ Ω ∈ ΩX

Then, there exist a constant 0 1λ ≥  and operator families 0 ( )λA  and 0 ( )λP  with 

 2 1 1
0 , 0 , ,00 0

ˆ( ) H ( , ( '( ), ( ) )), ( ) H ( , ( '( ), ( ) ( )))N
q q qol H ol H Hε λ ε λλ λ∈ Σ Ω Ω ∈ Σ Ω Ω + ΩA L X P L X

such that for any , 0= i ε λλ γ τ+ ∈Σ  and 1( , , , ) ( )qf g g h X∈ Ω , 0= ( ) ( , , , )v F f g g hλλA  and 0= ( ) ( , , , )q F f g g hλλP  are unique 
solutions of Eq. (8.2), where 1/2 1/2( , , , ) = ( , , , , , )F f g g h f g g g h hλ λ λ λ , and

 

 

/2
2 0 , 0( ( ), ( ) )

0 , 0( ( ), ( ) )

({( ) ( ( )) | }) ,

({( ) ( ( )) | })

j
j bNHq q

N bLq q

r

r

τ ε λ

τ ε λ

τ λ λ λ

τ λ λ

−Ω Ω

Ω Ω

∂ ∈Σ ≤

∂ ∇ ∈Σ ≤





L Y

L Y

R A

R P
 (8.3)

for = 0,1  and = 0,1,2j . Where, br  is a constant depending on 0m , 1m , ε , q , K , α , β , and N . 

Using Theorem 8.1 we shall prove the following theorem.

Theorem 8.2: Let 1 < , <p q ∞  and > 0T . Assume that the conditions i, ii, and iii in Theorem 8.1 are satisfied. Assume 
that 2 / 1 / = 1p q /+ . Then, there exists a 0 > 0γ  for which the following assertion holds: Let 2(1 1/ )

0 , ( )p N
q pu B −∈ Ω  be initial data 

for problem (8.1), and let F, ,GG and H  are functions appearing in the right hand side of (8.1) with 
1 1((0, ), ( ) ), ( , ( )) ( , ( )),N t

p q p q p qF L T L e G L H H Lγ−∈ Ω ∈ Ω ∩ Ω 

1 1 1( , ( ) ), ( , ( ) ) ( , ( ) )t N t N N
p q p q p qe G H L e H L H H Lγ γ− −∈ Ω ∈ Ω ∩ Ω  

for any 0γγ ≥ . Assume that the compatibility conditions:
 0 =0 0 | =0u G | ( ), ( D(u )n) = (H | ) for 2/p 1/N<1t q tJ tau τµ− ∈ Ω +  (8.4)

holds. Then, problem (8.1) admits solutions u  and p  with 

 2 1 1 1
,0

ˆ((0, ), ( ) ) ((0, ), ( ) ), ((0, ), ( ) ( ))N N
p q p q p q qu L T H H T L L T H H∈ Ω ∩ Ω ∈ Ω + Ωp

possessing the estimate: 
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2((0, ), ( )) ((0, ), ( ))((0, ), ( ))tL T H L T LL T Lp q p qp q
u u

Ω ΩΩ
+ ∂ + ∇p

 
2(1 1/ )0 1((0, ), ( ))( ), ( , ( ))

{ F ( ,H)T t
p L T LB p qq p L R Hp q

Ce u e Gγ γ−
− ΩΩ Ω

≤ + +

 
1/2 ( , ( )) ( , ( ))

( ,H) G }t t
tH L L Lp q p q

c e G eγ γ
γ

− −

Ω Ω
+ + ∂

 

for any 0γ γ≥ . Where, C  is a constant independent of 0γ γ≥  and 2 2 2 1/4= (( ) / (1 ))sup Rcγ τ γ τ τ∈ + + .

Proof: Let 0F  be the zero extension of F  outside of (0, )T , that is 0 ( , ) = ( , )t t⋅ ⋅F F  for (0, )t T∈  and 0 ( , ) = 0t⋅F  for (0, )t T∈/ . We 
consider the following problem:

 

    

0u D ( D( ) I) = in R,
d u = = d G in R,
( D(u) I)n = H on R.

t iv u F
iv G iv

µ

µ

∂ − − Ω×
 Ω×
 − Γ×

p

p

     (8.5)

 Let L  and 1−L  be the Laplace transform and the inverse Laplace transform defined by 

 1 1ˆ[ ]( ) = ( ) = ( ) , [ ]( ) = ( )
2

t tf f e f t dt g t e g dλ λλ λ τ τ
π

− −∫ ∫
 

L L

for = i Cλ γ τ+ ∈ . Notice that 

 1 1[ ]( ) = [ ( )]( ), [ ]( ) = [ ]( ),t tf e f t g t e g tγ γλ τ− − −L F L F

where F  and 1−F  denote the one dimensional Fourier transform and inverse Fourier transform. Applying the Laplace 
transform to (8.5) yields that 

 0̂ˆ ˆD ( D( ) ) = in ,
ˆ ˆˆd = = d

ˆ

ˆ
G in ,

ˆˆ( D( ) )n = H on .

u iv u I F

ivu G iv

u I

λ µ

µ

 − − Ω
 Ω
 − Γ

p

p

Thus, in view of Theorem 8.1, setting 

 1 1
0 0 0 0

ˆ ˆ ˆ ˆˆ ˆ ˆ= [ ( ) ( ( ), ( ),G( ),H( ))]( ), = [ ( ) (F ( ), ( ),G( ),H( ))]( ),u F F G t F G tλ λλ λ λ λ λ λ λ λ λ λ− −L A L Pp

we see that u  and p  satisfy Eq. (8.5). Applying the estimate (8.3) together with Weis’ operator valued Fourier multiplier 
theorem gives2 

2( , ( )) ( , ( )) ( , ( ))
u ut t t

tL H L L L Lp q p q p q
e e eγ γ γ− − −

Ω Ω Ω
+ ∂ + ∇

  

p

1/2
0 1( , ( )) ( , ( )) ( , ( ))

{ F ( ,H) ( ,H)t t t
L L L H L Lp q p q p q

C e e G e Gγ γ γ
γ

− − −

Ω Ω Ω
≤ + + Λ

  

 
( , ( ))

}t
t L Lp q

e Gγ−
Ω

+ ∂


 (8.6)

 where we have set 1/2 1 1/2 ˆ= [ ( )].f fγ λ λ−Λ L  By Proposition 3.4, we have 

 1/2 1 1/2 2 1/4 2
1/2( , ( )) ( , ( ))( , ( ))

ˆ= [ (1 ) (1 ) ( )] ,t t
L L H LL Lp q p qp q

e f f c e fγ γ
γ γλ τ τ λ− − − −

Ω ΩΩ
Λ + + ≤

 


F

which, combined with (8.6), leads to 
2((0, ), ( )) ((0, ), ( ))((0, ), ( ))tL T H L T LL T Lp q p qp q

u u
Ω ΩΩ

+ ∂ + ∇p

 1((0, ), ( )) ( , ( ))
{ F ( ,H)T t

L T Lp q L R Hp q
Ce e Gγ γ−

Ω Ω
≤ +

 1/2 ( , ( )) ( , ( ))
(G,H) G }.t t

tH L L Lp q p q
c e eγ γ
γ

− −

Ω Ω
+ + ∂

 

 (8.7)

 To construct a solution of Eq. (8.1), we next consider the initial value problem: 

 

 =0 0

D ( D(v) I) = 0 in (0, ),
d v = 0 in (0, ),
( (v) I) = 0 on (0, ),
v | = in .

t

t

v iv
iv

D n
v

µ

µ

∂ − − Ω× ∞
 Ω× ∞
 − Γ× ∞
 Ω

q

p
 (8.8)

Where, 0 0 =0v = u |tu − . Obviously, u v+  and p q+  are required solutions of Eq. (8.1). To solve Eq. (8.8), we formulate it in 
the semigroup setting. Given v , let ( )K v  be a unique solution of the weak Dirichlet problem: 

 1
q ,0

ˆ( ( ), ) = (D ( D( )) d v, ) for any H ( ),K v iv v ivϕ µ φ ϕ ′Ω Ω∇ ∇ −∇ ∇ ∈ Ω  (8.9)



On the maximal Lp- Lq theory arising in the study of a free boundary 
problem for the Navier-Stokes equations

 52

subject to ( ) =< ( ) , > dK v D v n n ivvµ −  on Γ . By the assumption iii in Theorem 8.1, we know the unique existence of 
1 1

,0
ˆ( ) ( ) ( )q qK v H H∈ Ω + Ω  for any 2 ( )qv H∈ Ω  possessing the estimate: 

 1( ) ( )(v) v .L Hq q
K C

Ω Ω
∇ ≤ ∇

Instead of (8.8), we consider the equations: 

 

 =0 0

D ( (v) (v)I) = in (0, ),
( D(v) (v)I)n = 0 on (0, ),
v | = in

t

t

v iv D K f
K

v

µ
µ
∂ − − Ω× ∞
 − Γ× ∞
 Ω

 (8.10)

 with v ( )qJ∈ Ω  for any > 0t . The corresponding resolvent problem to (8.10) is 

 D ( D(w) (w)I) = in , ( D( ) K( )I) | = 0.w iv K f w w nλ µ µ Γ− − Ω −

Applying Theorem 8.2, we see that problem (8.8) admits a unique solution 2v ( )N
qH∈ Ω  for any , 0ε λλ ∈Σ  and f ( )N

qL∈ Ω  
possessing the estimate: 
 2( ) ( ) ( )| | w w f .L H Lq q q

Cλ
Ω Ω Ω
+ ≤  (8.11)

By (8.9), ( (w) (w)I)n | = 0D Kµ Γ−  is equivalent to ( D(w)n) | = 0τµ Γ  provided that w ( )qJ∈ Ω . Thus, we define the domain 
( )q ΩD  and the operator qA  associated with Eq. (8.11) by setting 

2( ) = { ( ) ( ) | ( D(w) ) = 0on },N
q q qw J H n τµΩ ∈ Ω ∩ Ω ΓD

q= D ( D(w) ( ) ) for w ( ).qw iv K w Iµ − ∈ ΩW D

Then, the operator qA  generates a 0C  analytic semigroup 0{ ( )}tT t ≥  on ( )qJ Ω  associated with Eq. (8.11). Let 

, 1 1/ ,( ) = ( ( ), ( ))q p q q p pJ −Ω Ω ΩD S , where pp,1/1),( −⋅⋅  is a real interpolation functor, and then, for any 0 , ( )q pv ∈ ΩD , 0( , ) = (t)v t T v⋅  
is a unique solution of Eq. (8.8) possessing the estimate: 

 2(1 1/02 ( ),((0, ), ( )) ((0, ), ( ))
v v vt t

pt Bq pL H L Lp q p q
e e Cγ γ− −

− Ω∞ Ω ∞ Ω
+ ∂ ≤  (8.12)

 for any 0γ λ≥ , where C  is independent of γ . Notice that 0 , ( )q pv∈ ΩD  holds if and only if 2(1 1/ )
,v ( )p

q pB −∈ Ω  and ( (v)n) = 0D τµ  
on Γ  for 2 / 1 / < 1p q+ , and 2(1 1/ )

,v ( )p
q pB −∈ Ω  for 2 / 1 / > 1p q+ . In particular, by (8.4), 0 =0 ,u u | ( )t q p− ∈ ΩD  provided that 

2 / 1 / = 1p q /+ . Thus, 0 =0v = ( )(u u | )tT t −  is a unique solution of Eq. (8.8) with 0 0 =0v = u u |t−  and by (8.12) we have 

 2(1 1/ 2(1 1/0 =02 ( ) ( ), ,((0, ), ( )) ((0, ), ( ))
v v ( u u | ).t t

p pt tB Bq p q pL H L Lp q p q
e e Cγ γ− −

− −Ω Ω∞ Ω ∞ Ω
+ ∂ ≤ +

By real interpolation, we know that

 2(1 1/=0 2( ), ((0, ), ( )) ((0, ), ( ))
u | ( u u ).t t

pt tBq p L H L Lp q p q
C e eγ γ− −

− Ω ∞ Ω ∞ Ω
≤ + ∂

Thus, by (8.7) 

2((0, ), ( )) ((0, ), ( ))v vtL T H L T Lp q p qΩ Ω
+ ∂

2(1 1/ )0 1((0, ), ( ))( ), ( , ( ))
( u F ( ,H)T t

p L T LB p qq p L R Hp q
Ce e Gγ γ−

− ΩΩ Ω
≤ + +

1/2 ( , ( )) ( , ( ))
( ,H) }t t

tH R L L R Lp q p q
c e G e Gγ γ
γ

− −

Ω Ω
+ + ∂

This completes the proof of Theorem 8.2.

We now study the equations: 

 

 

=0

D ( D(v) I) = 0, d v = 0 in (0,T),
v n v = on (0,T),

( D( ) I (( ) )I)n = 0 on (0,T),
( , ) | = (0,0) in .

t

t

t

v iv iv
A F

v
v

σ

µ
ρ ρ
µ δ ρ
ρ

Γ

Γ

∂ − − Ω×
∂ + ⋅∇ − ⋅ + Γ×
 − − + ∆ Γ×
 Ω×Γ

F
B

p

q
 (8.13)

We shall prove the following theorem.

Theorem 8.3: let 1 < , <p q ∞  and > 0T . Assume that the conditions i–iv stated in Theorem 1.7 are satisfied. Then, for any 
2 1/((0, ), ( ))q

p qF L T W −∈ Γ , problem (8.13) admits solutions v  and ρ  with 

 2 1 3 1 2v ((0, ), ( ) ) ((0, ), ( ) ), ((0, ), ( )) ((0, ), ( ))N N
p q p q p q p qL T H H T L L T H H T Hρ∈ Ω ∩ Ω ∈ Ω ∩ Ω

possessing the estimate: 
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2 3 2((0, ), ( )) ((0, ), ( ))((0, ), ( )) ((0, ), ( ))v t tL T H L T HL T L L T Hp q p qp q p q
vω ρ ρ

ΩΩ Ω
+ ∂ + + ∂

2 1/((0, ), ( ))F .c T
qL T Wp q

Ce γσ − Γ
≤

 Proof: Let 0F  be the zero extension of F  outside of (0, )T  and we consider the equations:

 

 

0

D ( D( ) I) = 0, d = 0 in ,
v n = on ,

( D( ) (( ) ) ) = 0 on .

t

t

v iv v ivv
A v F

v I I n
σ

µ
ρ ρ
µ δ ρ

Γ

Γ

∂ − − Ω×
∂ + ⋅∇ − ⋅ + Γ×
 − − + ∆ Γ×







F
B

p

q

 (8.14)

Let 0̂F  be the Laplace transform of 0F  and let ( )λA , ( )λP  and ( )λH  be the operators given in Theorem 1.7. Then, v  
and ρ  are given by 

 1 1 1
0 0 0

ˆ ˆ ˆv = [ ( ) ( )], = [ ( ) ( )], = [ ( ) ( )],F F Fλ λ λ λ ρ λ λ− − −L A E L P E L H Ep

where 0 0
ˆ ˆ( ) = (0, ( ),0,0,0,0,0)F Fλ λE . Applying Theorem 1.7 together with Weis’ oprator valued Fourier multiplier theorem 

gives2

2 1 1 1
,l ,l ,l ,0

ˆv ( , ( ) ) ( , ( ) ), ( , ( ) ( )),N N
p oc q p oc q p oc q qL H H L L H H∈ Ω ∩ Ω ∈ Ω + Ω  p

3 1 2
,l ,l( , ( )) ( , ( )),p oc q p oc qL H H Hρ ∈ Ω ∩ Ω 

 and 

2 3 2( , ( )) ( , ( )) ( , ( )) ( , ( ))
vt t t t

t tL H L L L H L Hp q p q p q p q
e e v e eγ γ γ γρ ρ− − − −

Ω Ω Ω Ω
+ ∂ + + ∂

   

 2 1/2 1/0 ((0, ), ( ))( , ( ))
F Ft

qq L T Wp qL Wp q
C e Cγ−

−− ΓΓ
≤ ≤



 (8.15)

for any c σγ γ≥ . Since | / | 1γ λ ≤  for = i Cλ γ τ+ ∈ , we have

 

 

( , ( )) ( , ( ))

2 1/ 1 1/( , ( )) ( , ( ))

v v ,

.

t t
tL L L Lp q p q

t t
q qtL W L Wp pq q

e C e

e C e

γ γ

γ γ

γ

γ ρ ρ

− −

Ω Ω

− −
− −Γ Γ

≤ ∂

≤ ∂

 

 

 (8.16)

 Combining (8.15) and (8.16) gives 

2 2(( ,0), ( )) (( ,0), ( )) ( , ( )) ( , ( ))
v vt t

L L L Hp q p q L L L Hp q p q
e eγ γρ ρ− −

−∞ Ω −∞ Ω Ω Ω
+ ≤ +

 

1 1
2 1/2 ((0, ), ( ))( , ( )) ( , ( ))

( v ) F .t t
qt t L T Wp qL L L Hp q p q

e e Cγ γγ ρ γ− − − −
− ΓΩ Ω

≤ ∂ + ∂ ≤
 

Letting γ →∞ , wee see that 2(( ,0), ( )) (( ,0), ( ))v = = 0L L L Hp q p q
ρ

−∞ Ω −∞ Ω
, which leads to =0(v, ) | = (0,0)tρ . This completes the 

proof of Theorem 8.3.

We finally study the initial problem: 

 

    =0 0

D ( D(v) I) = 0, d v = 0 in (0,T),
v n = 0 on (0,T),

( D(v) I (( ) )I)n = 0 on (0,T),
(v, ) | = (0, ) in .

t

t

t

v iv iv
A vσ

µ
ρ ρ
µ δ ρ
ρ ρ

Γ

Γ

∂ − − Ω×
∂ + ⋅∇ − ⋅ + Γ×
 − − + ∆ Γ×
 Ω×Γ

p

p

F
B

      (8.17)

We shall prove the following theoorem.

Theorem 8.4: let 1 < , <p q ∞ . Assume that the conditions ii–iv stated in Theorem 1.7 are satisfied and that Ω  is a 
uniformly 3C  domain whose inside is finitely covering. Then, for any 3 1/ 1/

0 , ( )p q
q pBρ − −∈ Γ , problem (8.17) admits unique 

solutions v , p , and ρ  with 
2 1 1 1

,l ,l ,l ,0
ˆv ((0, ), ( ) ) ((0, ), ( ) ), ((0, ), ( ) ( )),N N

p oc q p oc q p oc q qL H H L L H H∈ ∞ Ω ∩ ∞ Ω ∈ ∞ Ω + Ωp

3 1 2
,l ,l((0, ), ( )) ((0, ), ( ))p oc q p oc qL H H Hρ ∈ ∞ Ω ∩ ∞ Ω

possessing the estimate: 

2 3 2((0, ), ( )) ((0, ), ( ))((0, ), ( )) ((0, ), ( ))v vt tL T H L T HL T L L T Hp q p qp q p q
ρ ρ

Ω ΩΩ Ω
+ ∂ + + ∂

3 1/ 1/0 ( )),
.T

p qBq p
Ceγ σγ ρ − − Γ

≤

 for any (0, )T ∈ ∞  and c σγ γ≥ . 
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Proof: First we consider the case where = 0σ . The corresponding resolvent problem to Eq. (8.17) is 

 

    

D ( D(u) (u, ) ) = in ,
u n u = g on ,

( D(v)n) = 0, d u = 0 on .

u iv K h I f
h A h

iv
σ

τ

λ µ
λ
µ

Γ

− − Ω
 + ⋅∇ − ⋅ + Γ
 Γ

F   (8.18)

Where, ( , )K u h  is a unique solution of the weak Dirichlet problem:
1
q ,0

ˆ( (u, ), ) = (D ( D(u)) d u, ) for any H ( ),K h iv ivϕ µ ϕ ϕ ′Ω Ω∇ ∇ −∇ ∇ ∈ Ω

subject to (u,h) =< D(u)n,n > ( )h d uK ivµ δ Γ− + ∆ −B  on Γ . We know the existence of 1 1
,0

ˆ(u, ) ( ) ( )q qK h H H∈ Ω + Ω  for 
2u ( )N
qH∈ Ω  and 3 1/ ( )q

qh W −∈ Γ  possessing the estimate: 

3 1/1( ) ( ) ( )(u,h) ( u h ).qL H Wq q q
K C −Ω Ω Γ

∇ ≤ ∇ +

Let 
2 1/= {( , ) | ( ), ( )},q

q q qu h u J h W −∈ Ω ∈ ΓH
2 3 1/= {(u, ) ( ) | u ( ), ( ),( D(u)n) | = 0},q

q q q qh H h W τµ−
Γ∈ Ω ∈ Ω ∈ ΓD H

q(u, ) = (D ( D(u) (u, ) ),(u.n ) | ) for(u,h) .q h iv K h I uµ Γ− − ∈A F D

And then, problem (8.18) is written as 

 ( , ) ( , ) = ( , ) in .qu h u h f gλ − Ω×ΓA  (8.19)

And also, the corresponding evolution equation is written as 

 =0 0 0( , ) ( , ) = (0,0) for t>0, (v, ) | = ( , )t q tv v uρ ρ ρ ρ∂ −A  (8.20)

with = (v, )K ρp  and 0u = 0 , where v q∈D  for > 0t . By Theorem 1.7 and Theorem 1.11, we see that there exists a 0 > 0λ  
such that for any , 0ε λλ ∈Σ  and ( , ) ( )qf g ∈ ΩH , problem (8.19) admits a unique solution (u, ) qh ∈D  possessing the estimate: 

 | | (u, ) (u, ) (f , ) .
q q q

h h C gλ + ≤H D H

Where, we have set 

2 1/ 3 1/2( ) ( ) ( ) ( )(u, ) = u , ( , ) = u .q qL W H Wq q q qq q
h h u h h− −Ω Γ Ω Γ

+ +H D

Thus, qA  generates a 0C  analytic semigroup 0{ ( )}tT t ≥  associated with Eq. (8.20) possessing the estimate:

 0
( ) ( )( )(f , ) (f , )t

q q
T t g Ce gλ

Ω Γ
≤H H

for any > 0t . Let , 1 1/ ,= ( , )q p q q p p−D H D , where 1 1/ ,( , ) p p−⋅ ⋅  is a real interpolation functor. By real interpolation method, we see 
that for any 0 0 ,( , ) q pu ρ ∈D , problem (8.20) admits a unique solution 0 0(v, ) = ( )(u , )T tρ ρ  possessing the estimate:

3 1/2((0, ), ( )) ((0, ), ( )) ((0, ), ( ))
v vt t t

qtL H L L L Wp q p q p q
e e eγ γ γ ρ− − −

−∞ Ω ∞ Ω ∞ Γ
+ ∂ +

2(1 1/ ) 3 1/ 1/2 1/ 0 0( ) ( ), ,((0, ), ( ))
( ).t

p p qqt B Wq p q pL Wp q
e C uγ ρ ρ−

− − −− Ω Γ∞ Γ
+ ∂ ≤ +

Since Ω  is a uniform 3C  domain, we can construct an extension, ρ , of ρ  to Ω  such that | =ρ ρΓ , 
3 1 2

,l ((0, ), ( )) ((0, ), ( ))p oc q p qL H H Hρ ∈ ∞ Ω ∩ ∞ Ω , and 

3 1/3((0, ), ( )) ((0, ), ( )) ,qL T H L T Wp q p q
Cρ ρ −Ω Γ

≤

2 1/2((0, ), ( )) ((0, ), ( )) ,qt tL T H L T Wp q p q
Cρ ρ −Ω Γ

∂ ≤ ∂

where C  is a constant independent of T . We write ρ  simply by ρ . Since 0 ,(0, ) q pρ ∈D  for 3 1/ 1/
0 , ( )p q

q pBρ − −∈ Γ , we then have 
Theorem 8.4 in the case where = 0σ .

We next consider the case where (0,1)σ ∈ . Let 1 1 1(v , , )hp  be a solution of Eq. (8.17) in the case where = 0σ  possessing 
the estimate: 

2 31 1 1((0, ), ( )) ((0, ), ( ))((0, ), ( ))v vtL T H L HL T Lp q p qp q
ρ

Ω ∞ ΩΩ
+ ∂ +

T
3 1/ 1/21 0((0, ), ( )) ( ),

p qt L H Wp q q p
Ceγρ ρ − −∞ Ω Γ

+ ∂ ≤
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for any 0γ λ≥ , where C  is independent of 0γ λ≥ . Let 2 2 2( , , )v ρp  be a unique solution of the equations: 

 2 2 2 2

2 2 2 2 1

2 2 2

2 2 =0

v D ( D(v ) I) = 0, d v = 0 in (0,T),
v n v = on (0,T),

( (v ) I (( ) )I)n = 0 on (0,T),
(v , ) | = (0,0) in .

t

t

t

iv iv
A A

D
σ σ

µ
ρ ρ ρ
µ δ ρ

ρ

Γ Γ

Γ

∂ − − Ω×
∂ + ⋅∇ − ⋅ + − ⋅∇ Γ×
 − − + ∆ Γ×
 Ω×Γ

F
B

p

p

By Theorem 8.3 and (1.3), we know the existence of 2v , 2p  and 2ρ  with 
1 2 1 1

2 2 ,0v ((0, ), ( ) ) ((0, ), ( ) ), ((0, ), ( ) ( )),N N
p q p q p q qH T L L T H L T H H∈ Ω ∩ Ω ∈ Ω + Ωp

1 2 3
2 ,l ,l((0, ), ( )) ((0, ), ( ))p oc q p oc qH H L Hρ ∈ ∞ Ω ∩ ∞ Ω

 possessing the estimate: 

2 3 22 2 2 2((0, ), ( )) ((0, ), ( ))((0, ), ( )) ((0, ), ( ))v vt tL T H L HL T L L Hp q p qp q p q
ρ ρ

Ω ∞ ΩΩ ∞ Ω
+ ∂ + + ∂

3 1/2 1/1 1 ((0, ), ( ))((0, ), ( ))
c T c T b

qq L T WL T W pp qq
Ce A Ceγ γσ σ

σ ρ σ ρ−
−− ΓΓ

≤ ⋅ ≤

( )
3 1/ 1/0 ( ),

c T b
p qBq p

Ce γ γσ σ ρ+ −
− − Γ

≤

 for any 0γ λ≥ . Without loss of generality, we may assume that 0
bcλ σ −≤ , because (0,1)σ ∈  and > 0b . Thus, setting 

1 2v=v +v , 1 2= +p p p  and 1 2=ρ ρ ρ+ , we see that v , p  and ρ  are required solutions of Eq. (8.17).

Applying Theorem 1.11 to the Laplace transform of solutions of the homogeneous equations, we have the uniqueness of 
solutions of Eq. (8.17). This completes the proof of Theorem 8.4.

Proof of Existence part, theorem 1.9: Let 1v , 1p  be solutions of Eq. (8.1), let 2v , 2p , 2ρ  be solutions of Eq. (8.13) with 

2 2= D v vF n+ ⋅ − F , and let 3v , 3p  and 3ρ  be solutions of Eq. (8.17). Setting 1 2 3v=v +v +v , 1 2 3= + +p p p p  and 2 3=ρ ρ ρ+ , 
we see that v , p , and ρ  are required solutions of Eq. (1.6).

Proof of Uniqueness, theorem 1.11: Let v , p , and ρ  be solutions of the homogeneous equations: 

 

 =0

D ( D(v) I) = 0, d v = 0 in (0,T),
v n v = 0 on (0,T),

( (v) I (( ) )I)n = 0 on (0,T),
( , ) | = (0,0) in ,

t

t

t

v iv iv
A

D
v

σ

µ
ρ ρ
µ δ ρ
ρ

Γ

Γ

∂ − − Ω×
∂ + ⋅∇ − ⋅ + Γ×
 − − + ∆ Γ×
 Ω×Γ

F
B

p

p
 (8.21)

 with
2 1 1 1ˆv ((0, ), ( ) ) ((0, ), ( ) ), ((0, ), ( ) ( )),N N

p q p q p q qL T H H T L L T H H∈ Ω ∩ Ω ∈ Ω + Ωp

3 1 2((0, ), ( )) ((0, ), ( )).p q p qL T H H T Hρ ∈ Ω ∩ Ω

For any f  defined on (0, )T , let [ ]E f  be an extension of f  outside of (0, )T  defined by setting 

 
0 for t<0,

[ ]( ) = ( , ) for t (0,T),
( ,2 ) for t (T,2T),

0 for t>2T.

E f t f t
f T t



 ⋅ ∈
 ⋅ − ∈


If =0|tf , then 
 

0 for t<0,
[ ]( ) = ( )( , ) for t (0,T),

( )( ,2 ) for t (T,2T),
for t>2T.0

t t

t

E f t f t
f T t



∂ ∂ ⋅ ∈
− ∂ ⋅ − ∈
Thus, 

1 2 1 1
,0

ˆ[ ] ( , ( ) ) ( , ( ) ), [ ] ( , ( ) ( )),N N
p q p q p q qE v H L L H E L H H∈ Ω ∩ Ω ∈ Ω + Ω  p

1 2 3[ ] ( , ( )) ( , ( )).p q p qE H H L Hρ ∈ Ω ∩ Ω 
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Moreover, by Eq. (8.21), we see that 

 

 

[ ] D ( D( [v]) [ ]I) = 0, d [u] = 0 in ,
[ ] [ ] [v] n [v] = 0 on ,

( D( [v]) [ ]I (( )[ ])I)n = 0 on .

t

t

E v iv E E ivE
E A E E

E
σ

µ
ρ ρ

µ δ ρ
Γ

Γ

∂ − − Ω×
∂ + ⋅∇ − ⋅ + Γ×
 − − + ∆ Γ×







F
B

p

p

 (8.22)

Let = [ [v]]( )u E λL , = [ [ ]]( )E λLq p , and = [ [ ]]( )h E ρ λL . Since E[v] , [ ]E p  and [ ]E ρ  vanish outside of (0, )T , u , q , and 
h  are entire functions. By Hölder’s inequality, we have 

(R ) 1/
2 22( ) ((0, ), ( ))0 0( )

u ( , ) ( ) v < ,
T Tt e tp p

H L T Hq p qHq
e v t e dtλ λ ′ ′− −

Ω ΩΩ
≤ ⋅ ≤ ∞∫ ∫

and so 2u ( )N
qH∈ Ω . In the same way, we see that 1 1

,0
ˆ( ) ( )q qH H∈ Ω + Ωq  and 3( )qh H∈ Ω . Morevoer, applying the Laplace 

transform to Eq. (8.21), u , q  and h  satisfy the homogeneous equations:

2 D ( ( ) ) = 0, = 0 in ,v iv D v I vλ µ− − Ωq

u n = 0 on ,h A h uσλ Γ+ ⋅∇ − ⋅ + ΓF

( D(u) (( ) )I) = 0 onI h nµ δ Γ− − + ∆ ΓBq

 for any Cλ ∈ . Thus, the uniqueness of the resolvent problem yields that = 0u , = 0q  and = 0h . Thus, applying the inverse 
Laplace transform, we have [v] = 0E , [ ] = 0E p  and [ ] = 0E ρ , which implies that = 0u , = 0p  and = 0ρ . This completes the 
proof of Theorem 1.11 2.

On the weak Dirichlet problem in N
  and 

N
+

In this appendix, we prove the unique existence and regularity theorem for the weak Dirichlet problem in the model cases. 

The N


 case
In this subsection, we consider the following weak Laplace problem in N


: 

 1 N
q

ˆ( , ) = ( , ) for any H ( ).N Nu fϕ ϕ ϕ ′∇ ∇ ∇ ∈
 


 (9.1)

We shall prove the following theorem. 

Theorem 9.1 Let 1 < <q ∞ . Then, for any ( )N N
qf L∈  , the weak Laplace problem (9.1) admits a unique solution 

1ˆ ( )N
qu H∈   possessing the estimate: 

( ) ( )N NL Lq q
u C f∇ ≤

 

.

Moreover, if we assume that d ( )N
qiv f L∈   in addition, then 

22 ( )N N
qu L∇ ∈   and 

 2
( )( )

u d f .NN LqLq
C iv∇ ≤





Proof: To prove the theorem, we consider the strong Laplace equation: 

 N= d f in .u iv∆ 
 (9.2)

Let 

 1
,d ( ) = { (D) | d (D)},N

q iv q qH D f L iv f L∈ ∈

where D  is any domain in N


. Since 0 ( )N NC∞


 is dense both in ( )N N
qL   and 1

,d ( )N
q ivH  , and so we may assume that 

0 ( )N Nf C∞∈ 
. Let ˆ[f ] = fF  and 1−F  denote the Fourier transfom f  and the Fourier inverse transform, respectively. We 

then set

 =11 1
2 2

[ ]( )
[d f ]( )= [ ] = [ ]
| | | |

N

j j
j

i f
ivu

ξ ξ
ξ

ξ ξ
− −− −

∑ F
FF F

where we have set 1= ( , , )Nf f f Τ


. By the Fourier multiplieara theorem we have

 

 
( ) ( )

2
( )( )

u f ,

u d f .

N NL Lq q

NN LqLq

C

C iv

∇ ≤

∇ ≤

 





 (9.3)

Of course, u  satisfies Eq.(9.2).

We now prove that u  satisfies the weak Laplace equation (9.2). For this purpose, we use the following lemma.
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Lemma 9.2 Let 1 < <q ∞  and let 

 
2 1/2

2 1/2 2 1/2

(1 | | ) for N=q,
( ) =

(1 | | ) log(2 | | ) for N=q.
q

x
d x

x x

 /+


+ +

Then, for any 1ˆ ( )N
qHϕ ∈  , there exists a constant c  for which 

 )
( )

NLq
Nq Lq

c C
d

ϕ ϕ−
≤ ∇





with some constant independent of ϕ  and c .

Proof: For a proof, see Galdi [Chapter II].44 To use Lemma 9.2, we use a cut-off function, Rψ , of Sobolev’s type defined as 
follows: Let ψ  be a function in ( )C∞

  such that ( ) = 1tψ  for | | 1 / 2t ≤  and ( ) = 0tψ  for | | 1t ≥ , and set 

 ln ln | |( ) = ( ).
ln lnR

xx
R

ψ ψ

Notice that 

 1| ( ) | , s ,
ln ln | | ln | |R R R

cx upp D
R x x

ψ ψ∇ ≤ ∇ ⊂  (9.4)

where we have set ln= { | | | }N R
RD x e x R∈ ≤ ≤ . Noting that 0 ( )N Nf C∞∈ 

, by (9.2) for large > 0R  and 1ˆ ( )N
qHϕ ′∈   we 

have 

 
(f , ) = (f , ( )) = (d f , ) = ( d f , ) = ( , )

= (( ) ( ), ) ( , ) ,
N N N R N R N

N N

c iv c iv c u c

u c u

ϕ ϕ ϕ ψ ϕ ψ ϕ

ψ ϕ ψ ϕ

∇ ∇ − − − − − − ∆ −

∇ ⋅ ∇ − + ∇ ∇
    



 



 (9.5)

where c  is a constant for which 

 ( )
( )

.NLq
Nq Lq

c C
d
ϕ ϕ

′
′

′

−
≤ ∇





  (9.6)

 By (9.4) and (9.6), we have 

 

 

( )
( )

( ) ( )

| (( ) ( u), ) | ( ) ( u)

u 0
ln ln

NN q Lq Nq Lq

NL D Lq q

cc d
d

C

φψ φ ψ

ϕ

′
′

′

′

−
∇ ⋅ ∇ − ≤ ∇ ⋅ ∇

≤ ∇ ∇ →

 











 (9.7)

as R →∞ . By (9.5) and (9.7) we see that u  satisfies the weak Dirichlet problem (9.1). The uniqueness follows from the 
existence theorem just proved for the dual problem. Moreover, if d ( )N

qiv f L∈   in addition, then 
22u ( )N N

qL∇ ∈  , and so 
by (9.3) we complete the proof of Theorem 9.1.

The half space case
 In this subsection, we consider the following weak Dirichlet problem in N

+ : 

    1 N
q ,0

ˆ( u, ) = ( , ) for any H ( ).N Nfϕ ϕ ϕ ′ +
+ +

∇ ∇ ∇ ∈
 


    (9.8)

We shall prove the following theorem.

Theorem 9.3 Let 1 < <q ∞ . Then, for any f ( )N N
qL +∈  , the weak Laplace problem (9.8) admits a unique solution 

1ˆu ( )N
qH +∈   possessing the estimate: 

( ) ( )N NL Lq q
u C f

+ +
∇ ≤

 

.

Moreover, if we assume that d ( )N
qiv f L +∈   in addition, then 

22u ( )N N
qL +∇ ∈   and 

2
( )( )

u d f .NN LqLq
C iv

++
∇ ≤





Proof: We may assume that Ô
1 0f = ( , , ) ( )N N

Nf f C∞
+… ∈ 

 in the following, because 0 ( )NC∞
+  is dense both in ( )N N

qL +  and 
1

,d ( )N
q ivH + . We first consider the strong Dirichlet problem:

     N
=0u = d in , | = 0.xNiv f u+∆                (9.9)

For any function, ( )f x , defined in N
+ , let ef  and of  be the even extension and the odd extension of f  defined in (4.40). 

Noting that 1
=1(d f ) = ( ) ( )No o e

j j N Njiv f f− ∂ + ∂∑ , we define u  by letting
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 1

11 1
2 2

[( ) ]( ) [( ) ]( )
[(d f ) ]( )= [ ] = [ ].

| | | |

N
o e

j j N No
j

i f i f
ivu

ξ ξ ξ ξ
ξ

ξ ξ

−

−− −

+

− −
∑ F F

FF F

We then have 

    2
( ) ( )( )

( ), u d f ,N
N Nq NL Lq qLq

u C f L C iv+ +
∇ ≤ ∇ ≤

 





 
 (9.10)

and moreover u  satisfies Eq.(9.9).

We next prove that u  satisfies the weak Dirichlet problem Eq.(9.8). For this purpose, instead of lemma 9.2, we use the 
Hardy type inequality:

    1 1/ 1 1/
0 0 0

( ( ( ) ) ) ( / )( ( ( )) ) ,
x p r p p r pf y dy x dy p r yf y y dy

∞ ∞− − − −≤∫ ∫ ∫   (9.11)

where 0f ≥ , 1p ≥  and > 0r  (cf. Stein [A.4 p.272]).45 Of course, using zero extension of f suitably, we can replace the 

interval (0, )∞  by ( , )a b  for any 0 < <a b≤ ∞  in (9.11). Let ,2 = { | | | 2 }N
R RD x R x R∈ ≤ ≤ . Using (9.11), we see that for any 

1
,0

ˆ ( )N
qHϕ ′ +∈   

      1
( ),2

= 0.lim L Dq R RR
R ϕ−

′→∞
    (9.12)

 In fact, using =0| = 0xNϕ , we write 
0

( , ) = ( )( , )
xN

N sx x x s dsϕ ϕ′ ′∂∫ . Thus, by (9.11) we have 

 | ( , ) | ( ) | ( )( , ) |
1

b bq q q
N N N N Na a

bqx x dx x x dx
q

ϕ ϕ′ ′ ′′
′ ′≤ ∂

′ −∫ ∫
for any 0 < <a b . Let

 
1 2= { || | 2 , / 2 < 2 }, = { | 0 2 , / 2 | | 2 },N N
R N R NE x x R R x R E x x R R x R′ ′∈ ≤ ≤ ∈ ≤ ≤ ≤ ≤ 

and then 1 2
,2R R R RD E E⊂ ∪ . Thus, by (9.11), 

 1/

,2
( | ( ) | )q q

DR R
x dxϕ ′ ′∫

 
2 2 1/

/2 0
| | /2 | | 2

( ){ | ( ) | | ( ) | } ,
1

R Rq q q
N N N NR

x R x R

Rq x dx dx x dx dx
q

ϕ ϕ′ ′ ′

′ ′≤ ≤ ≤

′
′ ′≤ ∂ + ∂

′ − ∫ ∫ ∫ ∫


which leads to (9.12).

Let ω  be a function in 0 ( )NC∞
  such that ( ) = 1xω  for | | 1x ≤  and ( ) = 0xϕ  for | | 2x ≥ , and we set ( ) = ( / )R x x Rω ω . For any 

1
,0

ˆ ( )N
qHϕ ′ +∈   and for large > 0R , we have 

  (d f , ) = ( d f , ) = ( , ) = (( ) ( ), ) ( u, ) .N R N R N R N R Niv iv u uϕ ω ϕ ω ϕ ω ϕ ω φ
+ + + + +

∆ − ∇ ⋅ ∇ − ∇ ∇
    

  (9.13)

By (9.12) 

 1
( ) ( ),2 ,2

| (( ) ( ), ) | 0R N L D L Dq R R q R R
u R uω ϕ ϕ−

+
∇ ⋅ ∇ ≤ ∇ →



as R →∞ . On the other hand, (d f , ) = (f , )N Niv ϕ ϕ
+ +

− ∇
 

, where we have used 0f ( )N NC∞
+∈  . Thus, by (9.13) we have 

 ( , ) = ( , )N Nu fϕ ϕ
+ +

∇ ∇ ∇
 

for any 1
,0

ˆ ( )N
qHϕ ′ +∈  . This shows that u  is a solution of the weak Dirichlet problem. The uniqueness follows from the 

existence of solutions for the dual problem, which completes the proof of Theorem 9.3. 

Regularity of the weak Dirichlet problem
In this appendix, we shall prove the following regularity theorem for the weak Dirichlet problem. 

Theorem 10.1 Let 1 < <q ∞ . Let Ω  be a uniform 2C  domain. Given ( )N
qf L∈ Ω , let 1

,0
ˆ ( )qu H∈ Ω  be a unique solution 

of the weak Dirichlet problem (1.10) possessing the estimate: 
( ) ( )

f
L Lq q

u C
Ω Ω

∇ ≤ . If we assume that d f ( )qiv L∈ Ω  in 

addition, then 2 ( )qu L∇ ∈ Ω  and 

 2
, ( ) ( )2( )

( divf f ).M q L LL q qq
u C

Ω ΩΩ
∇ ≤ +

Proof: Let i
jζ  ( = 0,1, )i j N∈  be cut-off functions given in Proposition 6.1. We first consider the regularity of 0

j uζ . Let 
0 0= ( )j jc c φ  be a constant in Lemma 6.6 such that 
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     0
010 ( )( )

.j L BL B q jq j
u c c u− ≤ ∇    (10.1)

 For any 1ˆ ( )N
qHφ ′∈  , we have 

0 0 0 0 0 0( ( ( )), ) = (( )( ), ) ( , ( )) (( ) ( ), )j j N j j N j N j Nu c u c u uζ φ ζ φ ζ φ ζ φ∇ − ∇ ∇ − ∇ + ∇ ∇ − ∇ ⋅ ∇
   

0 0 0 0= (( )( ) 2( ) ( ) d , ) ,j j j j Nu c u iv fζ ζ ζ φ− ∆ − + ∇ ⋅ ∇ +


 where we have used 0 0 0( , ( )) = (f , ( )) = ( divf , ) .j N j N j Nu ζ φ ζ φ ζ φ∇ ∇ ∇ −
  

Let 0 0 0 0= ( )( ) 2( ) ( ) divfj j j jf u c uζ ζ ζ∆ − + ∇ ⋅ ∇ + . Since 1
0

ˆ( ) ( )N N
qC H∞ ⊂  , for any 0 ( )NCφ ∞∈   we have 

0 0( ( ( )), ) = ( , ) ,j j N Nu c fζ φ φ∆ −
 

which yields that 

     0 0 N( ( )) = inj ju c fζ∆ −      (10.2)

 in the sense of distribution. By Lemma 6.6, ( )N
qf L∈   and 

       0 0( ) ( ) ( )
( divf ).NL L B L Bq q j q j

f C u≤ + ∇


   (10.3)

From (10.2) it follows that 

 0 0( ( )) =k j j ku c fζ∂ ∂ ∆ − ∂ ∂
 

for any k , ∈  . Since both sides are compactly supported distributions, we can apply the Fourier transform and the 
inverse Fourier transform. We then have 

 0 0 1
2( ( )) = [ [ ]( )].

| |
k

k j ju c fξ ξζ ξ
ξ

−∂ ∂ − 



F F

By the Fourier multiplier theorem, we have 

 0 0
( )( )

( ( )) .Nk j j N LL qq
u c C fζ∂ ∂ − ≤







Since 0 0 0 0 0 0 0( ( )) = ( ) ( ) ( )( )k j j j k k j j k k j ju c u u u u cζ ζ ζ ζ ζ∂ ∂ − ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂ −
    

, by (10.1) and (10.3) we have 0 2 ( )N N
j qu Lζ ∇ ∈   

and 

                0 2
0 0( ) ( )2( )

( divf ).j M L B L BL q j q jq
u C uζ

Ω
∇ ≤ + ∇   (10.4)

We next consider 1
juζ . For any 1

,0
ˆ ( )q jHφ ′∈ Ω , we have 

      1( ( ), ) = ( , ) ,j J j
u gζ φ φΩ Ω∇ ∇    (10.5)

 where we have set 1 1 1= ( divf 2( ) ( ) ( ) )j j ju uζ ζ ζ− + ∇ ⋅ ∇ + ∆g . By Lemma 6.6, ( )q jL∈ Ωg  and 

     1 1( ) ( ) ( )
( divf ).

L L B L Bq j q j q j
C u

Ω Ω∩ Ω∩
≤ + ∇g   (10.6)

We use the symbols given in Proposition 6.1. Let ka


 and kb


 be the t( , ) hk   component of N N×  matrices jA  and jB  
given in Proposition 6.1. By the change of variables: = ( )jy xΦ , the variational equation (10.5) is transformed to 

     
, =1

(( ) , ) = ( , ) .
N

k k k N N
k

A v hδ φ φ
+ +

+ ∂ ∂∑   

 



   (10.7)

 
Where, we have set 

1 0= , = , = det( ) = 1 ,j j j j jv u h J B Jζ Φ Φ + +  Ag

 

0
=1

= { ( ) ( )}.
N

k m km m k k m km km
m

A a b a J a b b J a b+ + + +∑     

By Proposition 6.1 and (10.6), we have
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1( ) ( )

1 1( ) ( ) ( )

, ,

( divf ),

N Nk k KL L R

NL L B L Bq q j q j

A CM A C

h C u
∞ ∞

∩Ω ∩Ω+

≤ ∇ ≤

≤ + ∇

 





  (10.8)

where KC  is a constant depending K , α , and β  appearing in Definition 1.1. Since 1 1s ( ) N
jupp f B−

+⊂ Φ ∩ , by Lemma 6.6 

 1 1 1( ) ( ) ( ) ( )
| ( , ) | N N N NN L B L B L B Lq j q j q j q

h h Cφ φ φ
∩ ∩ ∩′ ′+ + + ++

≤ ≤ ∇
   



g

for any 1
,0

ˆ ( )N
qHφ ′ +∈  , where C  is a constant independent of j∈ . Thus, by the Hahn-Banach theorem, there 

exists ( )N N
qh L +∈   such that 1( ) ( )N NL L Bq q j

h C h
∩+ +

≤
 

 and ( , ) = ( , )N Nh hφ φ
+ +

∇
 

 for any 1
,0

ˆ ( )N
qHφ ′ +∈  . In particular, 

divh = ( )N
qh L +− ∈  . Thus, the variational problem (10.7) reads 

 1 N
q ,0

, =1

ˆ(( ) , ) = ( , ) for any H ( ).
N

k k k N N
k

A v hδ φ φ φ ′ +
+ +

+ ∂ ∂ ∇ ∈∑   

 





We now prove that if 1 (0,1)M ∈  is small enough, then for any ( )N N
qg L +∈  , there exists a unique solution 1

,0
ˆ ( )N

qw H +∈   
of the variational problem: 

    1 N
q ,0

, =1

ˆ(( ) , ) = ( , ) forany H ( ).
N

k k k N N
k

A w gδ φ φ φ ′ +
+ +

+ ∂ ∂ ∇ ∈∑   

 



  (10.9)

having the estimate: 

      
( ) ( )

.N NL Lq q
w C g

+ +
∇ ≤

 

   (10.10)

Morevoer, if divg ( )N
qL +∈  , then 1 ( )N N

qw H +∇ ∈   and 

     2
( ) ( )( )

divg .N NKN L LL q qq
w C C g

+ ++
∇ ≤ +

 



  (10.11)

In fact, we prove the existence of w  by the successive approximation. Let 1
1 ,0

ˆ ( )N
qw H +∈   be a solution of the weak 

Dirichlet problem: 

     1 N
1 q ,0

ˆ( , ) = ( , ) forany H ( ).N Nw gφ φ φ ′ +
+ +

∇ ∇ ∇ ∈
 

   (10.12)

By Theorem 9.3, 1w  uniquely exists and satisfies the estimate: 

      1 ( ) ( )
.N NL Lq q

w C g
+ +

∇ ≤
 

   (10.13)

Moreover, if we assume that divg ( )N
qL +∈   additionally, then 2 1

1 ( )N N
qw H +∇ ∈   and 

                  2
1 ( )( )

divg .NN LL qq
w C

++
∇ ≤





  (10.14)

Given 1
,0

ˆ ( )N
j qw H +∈  , let 1

1 ,0
ˆ ( )N

j qw H+ +∈   be a solution of the weak Dirichlet problem:

 

   

1 N
1 q ,0

, =1

ˆ( , ) = ( , ) ( , ) for any H ( ).
N

j N N k k j N
k

w g A wφ φ φ φ ′+ +
+ + +

∇ ∇ ∇ − ∂ ∂ ∈∑  

  



  (10.15)

By Theorem 9.3 and (10.8), 1+jw  exists and satisfies the estimate:

    1 1( )( ) ( )
( g ).j jN NLL Lqq q

w C M w+ Ω++ +
∇ ≤ + ∇

 

   (10.16)

Applying Theorem 9.3 and (10.8) to the difference 1j jw w+ − , we have 

    1 1 1( ) ( )
( ) ( ) .j j j jN NL Lq q
w w CM w w+ −

+ +
∇ − ≤ ∇ −

 

  (10.17)

Choosing 1 1 / 2CM ≤  in (10.17), we see that =1{ }j jw ∞  is a Cauchy sequence in 1
,0

ˆ ( )N
qH + , and so the limit 1

,0 ( )N
qw H +∈   

exists and satisfies the weak Dirichlet problem (10.9). Moreover, taking the limit in (10.16), we have 

1( ) ( ) ( )
.N NL L Lq q q

w C g CM w
Ω+ + +

∇ ≤ + ∇
 

Since 1 1 / 2CM ≤ , we have 
( ) ( )

2 gNL Lq q
w C

Ω+ +
∇ ≤



. Thus, we have proved that the weak Dirichlet problem (10.9) admits 
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at least one solution 1
,0

ˆ ( )qw H +∈ Ω  possessing the estimate (10.10). The uniqueness follows from the existence of solutions 
to the dual problem. Thus, we have proved the unique existence of solutions of Eq.(10.9).

We now prove that 1 ( )N N
qw H +∇ ∈   provided that divg ( )N

qL +∈  . By Theorem 9.3, 1
1 ( )N N

qw H +∇ ∈   and 1w  satisfies the 
estimate: 

 2
11 ( )( )

divg .N HL qq
w C

Ω++
∇ ≤



Moreover, if we assume that 2 ( )N N
j qw L +∇ ∈   in addition, then applying Theorem 9.3 to (10.15) and using (10.8), we see 

that 
22

1 ( )N N
j qw L+ +∇ ∈   and 

   2 2
1 1( ) ( )( ) ( )

divg .Nj j K j NN NL LL Lq qq q
w C CM w C w+

+ ++ +
∇ ≤ + ∇ + ∇





 

 (10.18)

And also, applying Theorem 9.3 to the difference 1j jw w+ −  and using (10.8), we have 
2 2

1 1 1 1 ( )( ) ( )
( ) ( ) ( ) ,Nj j j j K j jN N LL L qq q
w w CM w w C w w+ − −

++ +
∇ − ≤ ∇ − + ∇ −



 

which, combined with (10.17), leads to 
2

1 1 ( )( )
( ) ( ) Nj j j jN LL qq
w w w w+ −

++
∇ − + ∇ −





 
2

1 1 1 1 2 ( )( )
( ) ( 1) ( ) .Nj j K j jN LL qq

CM w w C C M w w− − −
++

≤ ∇ − + + ∇ −




Choosing 1 > 0M  so small that 1 1 / 2CM ≤  and 1( 1) 1 / 2KC M+ ≤ , then we have 
2 1

1 1 ( )( )
( ) ( ) (1 / 2) j

Nj j j jN LL qq
w w w w L−

+ −
++

∇ − + ∇ − ≤




with 2
3 2 2 1 ( )( )

= ( ) ( ) NN LqLq
L w w w w

++
∇ − + ∇ −





. From this it follows that 2
=1{ }j jw ∞∇  is a Cauchy sequence in ( )qL Ω , which 

yields that 
22 ( )N N

qw L +∇ ∈  . Moreover, taking the limit in (10.18) and using (10.10) gives that
2 2

( ) ( )( ) ( )
d g (1 / 2) g .N NKN NL Lq qL Lq q

w C iv w C
+ ++ +

∇ ≤ + ∇ +
 

 

which leads to (10.11).

Applying what we have proved and using the estimate: 

1 1( ) ( ) ( ) ( ) ( )d d ,N N NL L L L B L Bq q q q qj j
ivh h C h C iv f u

+ + +
+ ≤ ≤ + ∇

  

which follows from (10.8), we have 1 1v = ( u ) ( )N N
j j qHζ +∇ ∇ Φ ∈   and 

1
1 11 ( ) ( )( )

( ) ( d .j j N L B L Bq qH j jq
u C iv f uζ

∩Ω ∩Ω+
∇ Φ ≤ + ∇





Since 1 11( ) ( )L B L Bq qj j
u c u

∩Ω ∩Ω
≤ ∇  as follows from Lemma 6.6, we have 

    1 2
1 1( ) ( )( )

u ( d f ).j L B L Bq qL j jq
C iv uζ

∩Ω ∩ΩΩ
∇ ≤ + ∇    (10.19)

Combining (10.4), (10.19) and (6.5) gives 
2

( ) ( ) ( ) ( )( )
( d f u ) ( d f f ),L L L Lq q q qLq

u C iv C iv
Ω Ω Ω ΩΩ

∇ ≤ + ∇ ≤ +

which completes the proof of Theorem 10.1.

A proof of Lemma 7.5
In this appendix, we shall prove Lemma 7.5. Namely, we prove the following lemma.

Lemma 11.1 Let 1 < <q ∞  and let Ω  be a uniformly 2C  domain whose inside is finite covering. Let O  be a set given in 
Definition 7.1. Then, we have

 1
, q,0( ) ( )

ˆfor any H ( )qL Lq q
Cϕ ϕ ϕ

Ω
≤ ∇ ∈ ΩSO

with some constant ,qC O  depending solely on O  and q .

Proof: Let iO  ( = 1, ,i ι ) be the sub-domains given in Definition 7.1, and then it is sufficient to prove that 
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 q,0( ) ( )
ˆfor any H ( )and i=1, ,K.L Lq i q

Cϕ ϕ ϕ
Ω

≤ ∇ ∈ Ω O

If i R⊂ ΩO  for some > 0R , since | = 0ϕ Γ , by the usual Poincarés’ inequality we have 

1
q,0( ) ( ) ( )

ˆfor any H ( ).L L Lq i q R q R
Cϕ ϕ ϕ ϕ

Ω Ω
≤ ≤ ∇ ∈ ΩO

Let iO  be a subdomain for which the condition b in Definition 7.1 holds. Since the norms for ( ( ))yϕ τA  and ( )yϕ  are 
equivalent, without loss of generality we may assume that 

{ = ( , ) | ( ) < < , }N
i N Nx x x a x x b x D′ ′ ′⊂ ∈ ∈ ⊂ ΩO

{ = ( , ) | = ( ) } .N
N Nx x x x a x x D′ ′ ′∈ ∈ ⊂ Γ

Since 1
,0

ˆ ( )qHϕ ∈ Ω , we can write 

( )
( , ) = ( )( , ) .

xN
N sa x

x x x s dsϕ ϕ
′

′ ′∂∫
because ( , ( )) = 0x a xϕ ′ ′ . By Hardy inequality (9.11), we have

1/ 1/
( ) ( ) ( )

( | ( , ) | ) ( ( | ( )( , ) | ) )
b b xNq q q q q q

N N N s N Na x a x a x
x x x dx x s ds x dxϕ ϕ− −

′ ′ ′
′ ′≤ ∂∫ ∫ ∫

 
1/

( )
( | ( , ) | ) ,

1
b q q q

sa x

q s x s s ds
q

ϕ −
′

′≤ ∂
+ ∫

and so, by Fubini’s theorem we have
1/ 1/

( )
( | ( ) | ) ( | ( , ) | )

bq q q q
N ND a xi

x dx dx x x dxϕ ϕ
′

′ ′≤∫ ∫ ∫O

 
1/ 1/

( ) ( )
( | ( , ) | ) ( | ( ) | )

1
b bq q q q q q

N N N N ND a x D a x

qbdx x x x b dx dx x dx
q

ϕ ϕ−
′ ′

′ ′ ′≤ ≤ ∂
+∫ ∫ ∫ ∫

( ) .
1 Lq

qb
q

ϕ
Ω

≤ ∇
+

This completes the proof of Lemma 11.1.

Remark on a proof of Proposition 6.1
In Enomoto-Shibata37 [Appendix], instead of , ( )

( , )i i
j j KNL

B B C−
∞

∇ ≤


, it was proved that 

, 2( )
( , ) ,i i

j j NL
B B CM−

∞
∇ ≤



that is the estimate of ,( , )i i
j jB B −∇  depends on 1M . We shall give an idea how to improve this point below. Let 0 0 0= ( , )Nx x x′ ∈Γ  

and we assume that 

0 0 0( ) = { | > ( )( ( ))} ( ),N
NB x x x h x x B x B xβ α β′′ ′ ′Ω∩ ∈ ∈ ∩

0 0 0( ) = { | = ( )( ( ))} ( ).N
NB x x x h x x B x B xβ α β′′ ′ ′Γ ∩ ∈ ∈ ∩

We only consider the case where = 3k . In fact, by the same argument, we can improve the estimate in the case where = 2k

. We assume that 3
0( ( ))h C B xα ′′∈ , 3 ( ( ))0H B xh K

α′ ′∞
≤ , and 0 0= ( )Nx h x ′ . Below, C  denotes a generic constant depending on 

K , α  and β  but independent of ε . Let ( )yρ  be a function in 0 ( )NC∞
  such that ( ) = 1yρ  for | | 1 / 2y′ ≤  and | | 1 / 2Ny ≤  

and ( ) = 0yρ  for | | 1y′ ≥  or | | 1Ny ≥ . Let ( ) = ( / )y yερ ρ ε . We consider the C∞  diffeomorphism:;

 
0 , ,

=1 , =1
= ( ) = ( ).

N N

j j j j k k j k k
k k

x y x t y s y y yε
ερΦ + +∑ ∑

 



Where, ,j kt  and ,j ks


 are some constants satisfying the conditions (12.3), (12.1), and (12.2), below. Let 

1 1( ) = ( ) ( ( ), , ( )).N NG y y h y yε ε ε
ε −Φ − Φ Φ

Notice that 0 0(0) = ( ) = 0NG x h xε ′− . We choose ,j kt  and ,mns


in such a way that 

  
1 1

, 0 , , 0 ,
=1 =1

(0) = ( ) = 0, (0) = ( ) = 0,
N N

N N k N N j k j
k kN k j k

G Gh ht x t t x t
y x y x
ε ε

− −

′ ′
∂ ∂∂ ∂

/− −
∂ ∂ ∂ ∂∑ ∑  (12.1)
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2 21 1

, , 0 , , 0 , ,
=1 , =1

(0) = ( )( ) ( ) = 0.
N N

N m N m k m k m j k m
k j km k j k

G Ghs s x s s x t t
y y x x x

ε ε
− −

′
∂ ∂∂ ′+ − + −
∂ ∂ ∂ ∂ ∂∑ ∑

    



    (12.2)

Moreover, setting 

 1,1 2,1 ,1

1,2 2,2 ,2

1, 2, ,

=

N

N

N N N N

t t t
t t t

T

t t t

 
 
 
 
  
 





   



we assume that T  is an orthogonal matrix, that is 

     , ,
=1

1 for m=n,
= =

0 for m=n.

N

m n mnt t δ

 /

∑
 



   (12.3)

 We write 0( )
j

h x
x ′
∂
∂

 simply by jh  and set 1 2 2 2 2
1 1== 1 = 1N

j j j NjH h h h h−
+ −+ + + + +∑






. Let 

 
, ,

1 1
= , = ( = 1, , 1),N j N k N j

N N j N k N j
N j N j N j N j

h h h
t t k j

H H H H
− − −

− − −
− + − − + −

− −

 
1

, ,
1

, ,
1 1

= , = 0( = 1, , 1)

1for j=1, ,N 1, and = ( = 1, , 1), = .

N j
N j N j k N j

N

i
i N N N

H
t t k N j

H
ht i N t
H H

+ −
− − −

−

− −

− − −



 

Then, we see that such ,j kt  satisfy (12.1) and (12.3). In particular, 

      
1

1(0) = .
N

G
y H
ε∂

∂
    (12.4)

Moreover, assuming the symmetry: , ,=jk kjs s
 

, we have 

 2 21 1

, 0 , , , 0 , ,2
, =1 , =12 1

1= ( ) , = ( ) .
2 2

N N
i

N jk m j n k i jk m j n k
m n m nm n m n

hh hs x t t s x t t
H x x x xH

− −

′ ′
∂ ∂

−
∂ ∂ ∂ ∂∑ ∑

By successive approximation, we see that there exists a constant 0 > 0ε  such that for any 0(0, )ε ε∈  there exists a function 
3( (0))C Bε εψ ′∈  satisfies the following conditions: 

(0) = (0) = (0) = 0,i i jε ε εψ ψ ψ∂ ∂ ∂
2 1

( (0)) ( (0)) ( (0)) ( (0))
, , , ,i i j i j kL B L B L B L B

C C C Cε ε ε εε ε ε ε
ψ ε ψ ε ψ ψ ε −

′ ′ ′ ′∞ ∞ ∞ ∞
≤ ∂ ≤ ∂ ∂ ≤ ∂ ∂ ∂ ≤

     ( , ( )) = 0 for y B (0),G y yε ε εψ′ ′ ′ ′∈    (12.5)

 where i , j  and k  run from 1 through 1N − . Notice that 
1

0
( ) = ( ) = ( , ( )) ( )( , ( ) ( ( ))) ( ( ))N N N Nx h x G y G y y G y y y y d y yε ε ε ε ε ε ε εψ ψ θ ψ θ ψ′ ′ ′ ′ ′ ′ ′− + ∂ + − −∫

     = ( )(0) ( ))( ( )),N NG G y y yε ε εψ ′∂ + −    (12.6)

 where we have used ( , ( )) = 0G y yε εψ′ ′  and we have set 
11 1

0 0
=1

( ) = { ( )( , ( ( ) ( ( )))
N

N NG y G y y y y yε ε ε ετ τ ψ θ ψ
−

′ ′ ′∂ ∂ + −∑∫ ∫  





 
2 ( , ( ( ) ( ( )))( ( ) ( ( )))} .N N NG y y y y y y y d dε ε ε ε ετ τ ψ θ ψ ψ θ ψ θ τ′ ′ ′ ′ ′+∂ + − + −

Since 1( )(0) = 1 /NG Hε∂ , choosing 0 > 0ε  so small that 1| ( ) | 1 / (2 )G y Hε ≤  for 0| |y ε≤ , we see that ( ) 0Nx h x′− ≥  and 
( ) 0Ny yεψ ′− ≥  are equivalent.

Let ω  be a function in 1
0 ( )NC∞ −


 such that ( ) = 1yω ′  for | | 1 / 2y′ ≤  and ( ) = 0yω ′  for | | 1y′ ≥  and set ( ) = ( ) ( / )y y yε εω ψ ω ε′ ′ ′ . 
Then, by (12.5) we have

 

    
2

1 1( ) ( )

1
1 1( ) ( )

, ,

, .

N N iL L

N Ni j i j kL L

C C

C C

ε ε

ε ε

ω ε ε ω

ω ε ω ε

− −∞ ∞

−
− −

∞ ∞

≤ ≤ ∂

∂ ∂ ≤ ∂ ∂ ∂ ≤





 

   (12.7)
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where i , j , and k  run from 1 through 1N − . Setting ( ) = ( , ( ))Nz z z zε ε
εω′ ′Ψ Φ + , that is = ( )N Ny z zεω ′+ , and =j jy z  for 

= 1, , 1j N − , we see that there exists an 0 > 0ε  such that for any 0(0, )ε ε∈ , the map: = ( )z x zε→ Ψ  is a diffeomorphism 
of 3C  class from N

  onto N
 . Since 

 , , , ,= , =m m
m k m k m N n N

k N

x xt b t b
z z

∂ ∂
+ +

∂ ∂

where we have set 

, , , ,
, =1 , =1

= ( ( )) { ( ( ))} ( ),
N

m k m ij i j m N m ij i j
i j i jk k k

b s y y y t s y y y z
z z z

ε
ε ε

ωρ ρ ∂∂ ∂ ′+ +
∂ ∂ ∂∑ ∑

 
, ,

, =1
= ( ( )),n N m ij i j

i j N
b s y y y

z ερ
∂
∂∑

let A  and B  be the N N×  matrices whose t( , ) hm n  components are ,m nt  and ,m nb , respectively. Then, by (12.7), A  is an 
orthogonal matrix and B  satisfies the estimates: 

2 1
( ) ( ) ( )

, , .N N NL L L
B C B C B Cε ε −

∞ ∞ ∞
≤ ∇ ≤ ∇ ≤

 



Moreover, by (12.6) we have 

1( ) = (1 / ( , ( )))( ( ( / ) 1) ( )),N N Nx h x H G z z z z z zε ε εω ω ε ψ′ ′ ′ ′ ′− + + + −

which shows that when | | / 2z ε′ ≤ , ( )Nx h x′≥  and 0Nz ≥  are equivalent. We can construct the sequences of 0 ( )NC∞
  

functions, { }i
jζ , { }i

jζ , by standard manner (cf. Shibata et al.37 [Appendix]). This completes the proof of Proposition 6.1.46−48

References
1. VA Solonnikov. On the linear problem arising in the study of a free boundary problem for the Navier-Stokes equations. Algebra i 

Analiz. 2010;22(6):235–269.

2. L Weis. Operator-valued Fourier multiplier theorems and maximal Lp-regularity. Mathematische Annalen. 2001;319(4):735–758.

3. MS Agranovich, MI Visik. Elliptic problems with a parameter and parabolic problems of general type. Uspekhi Mat. Nauk. 
1964;19(3):53–161.

4. G Grubb, VA Solonnikov. Boundary value problems for the nonstationary Navier-Stokes equations treated by pseudo-differential 
methods. Mathematica Scandinavica. 1991;69(2):217–290. 

5. H Abels, Y Terasawa. On Stokes operators with variable viscosity in bounded and unbounded domains. Mathematische Annalen. 
2009;344(2):381–429.

6. H Saito, Y Shibata. On decay properties of solutions to the Stokes equtions with surface tension and gravity in the half space. J 
Math Soc Japan. 2016;68(4):1559–1614. 

7. Y Shibata. Global wellposedness of a free boundary problem for the Navier-Stokes equations in an exterior domain. Fluid Mech 
Res Int. 2017;1(2):00008.

8. J Prüss, S Shimizu, M Wilke. On the qualitative behaviour of incompressible two-phase flows with phase transition; The case of 
non-equal densities. Commun Partial Diff Eqns. 2014;39:1236–1283.

9. J Prüss, G Simonett. On the two-phase Navier-Stokes equations with surface tension. Interfaces Free Bound. 2010;12:311–345.

10. J Prüss, G Simonett. Analytic solutions for the two-phase Navier-Stokes equations with surface tension and gravity. In: J Escher, 
et al editors. Progress in Nonlinear Differential Equations and Their Applications. Volume 80; Springer: Switzerland: 2011, pp. 
507–540.

11. S Shimizu, S Yagi. On local Lp-Lq well-posedness of incompressible two-phase flows with phase transitions: non-equal densities 
with large initial data. Adv Diff Eqns. 2017;22(9/10):737–764.

12. JT Beale. The initial value problem for the Navier-Stokes equations with a free surface. Commun Pure Appl Math. 1981;344(3):359–
392.

13. G Allain. Small-time existence for Navier-Stokes equations with a free surface. Appl Math Optim. 1987;16(1):37–50.

14. A Tani. Small-time existence for the three-dimensional Navier-Stokes equations for an incompressible fluid with a free surface. Arch 
Rational Mech Anal. 1996;133(4):299–331.

15. H Abels. The initial-value problem for the Navier-Stokes equations with a free surface in -Sobolev spaces. Adv Differential Equations 
2005;10(1):45–64. 

16. VA Solonnikov. On an initial-boundary value problem for the Stokes systems arising in the study of a problem with a free boundary. 
Trudy Mat. Inst. Steklov. 1990;188:150–188. 

http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=aa&paperid=1221&option_lang=eng
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=aa&paperid=1221&option_lang=eng
https://link.springer.com/article/10.1007/PL00004457
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=rm&paperid=6210&option_lang=eng
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=rm&paperid=6210&option_lang=eng
https://www.mscand.dk/article/view/12380
https://www.mscand.dk/article/view/12380
https://link.springer.com/article/10.1007/s00208-008-0311-7
https://link.springer.com/article/10.1007/s00208-008-0311-7
https://projecteuclid.org/euclid.jmsj/1477327226
https://projecteuclid.org/euclid.jmsj/1477327226
http://medcraveonline.com/FMRIJ/FMRIJ-01-00008.php
http://medcraveonline.com/FMRIJ/FMRIJ-01-00008.php
https://www.tandfonline.com/doi/abs/10.1080/03605302.2013.821131
https://www.tandfonline.com/doi/abs/10.1080/03605302.2013.821131
https://arxiv.org/abs/0908.3327
https://link.springer.com/chapter/10.1007/978-3-0348-0075-4_26
https://link.springer.com/chapter/10.1007/978-3-0348-0075-4_26
https://link.springer.com/chapter/10.1007/978-3-0348-0075-4_26
https://projecteuclid.org/euclid.ade/1495850458
https://projecteuclid.org/euclid.ade/1495850458
https://onlinelibrary.wiley.com/doi/full/10.1002/cpa.3160340305
https://onlinelibrary.wiley.com/doi/full/10.1002/cpa.3160340305
https://link.springer.com/article/10.1007/BF01442184
https://link.springer.com/article/10.1007%2FBF00375146
https://link.springer.com/article/10.1007%2FBF00375146
https://projecteuclid.org/euclid.ade/1355867895
https://projecteuclid.org/euclid.ade/1355867895
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tm&paperid=1797&option_lang=eng
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tm&paperid=1797&option_lang=eng


On the maximal Lp- Lq theory arising in the study of a free boundary 
problem for the Navier-Stokes equations

 65

17. VA Solonnikov. Solvability of the problem of evolution of a viscous incompressible fluid, bounded by a free surface on a finite time 
interval. Algebra i Analiz. 1991;3(1):222–257.

18. B Schweizer. Free boundary fluid systems in a semigroup approach and oscillatory behavior. SIAM J Math. Anal. 1997;28(5):1135–
1157.

19. Ilya S Mogilevski, VA Solonnikov. Solvability of a noncoercive initial boundary-value problem for the Stokes system in Hölder classes 
of functions. Z Anal Anwend. 1989;8(4):329–347.

20. Iliya S Mogilevskii, VA Solonnikov. On the solvability of an evolution free boundary problem for the Navier-Stokes equations in 
Holder spaces of functions. In: Mathematical problems relating to the Navier-Stokes equation. Volume 11. 105–181. Singapore: 
World Scientific Publishing; 1992.

21. VA Solonnikov. On the transient motion of an isolated mass of a viscous incompressible fluid. Mathematics of the USSR-Izvestiya. 
1988;31(2):381–405.

22. PB Mucha, W Zaj czkowski. On local existence of solutions of the free boundary problem for an incompressible viscous self-
gravitating fluid motion. Applicationes Mathematicae. 2000;27(3):319–333. 

23. Y Shibata, S Shimizu. On a free boundary problem for the Navier-Stokes equations. Diff Int Eqns. 2007;20(3):241–276.

24. Y Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete Contin 
Dyn Syst Ser. 2016;9(1):315–342.

25. A Tani, N Tanaka. Large-time existence of surface waves in incompressible viscous fluids with or without surface tension. Arch 
Rational Mech Anal. 1995;130(4):303–314.

26. D Lynn, G Sylvester. Large time existence of small viscous surface waves without surface tension. Comm Part Diff Eqns. 
1990:15(6):823–903.

27. JT Beale, T Nishida. Large-time behaviour of viscous surface waves. Lecture Notes in Num. Appl Anal. 1985;128:1–14. 

28. Donna Sylvester. Decay rates for a two-dimensional viscous Ocean of finite depth. J Math Anal Appl. 1996;202(2):659–666.

29. Y Hataya. Decaying solution of a Navier-Stokes flow without surface tension. J Math Kyoto Univ. 2009;49(4):691–717.

30. VA Solonnikov. Mass bounded by a free surface. Zap Nauchn Sem St Petersburg Otdel Mat Inst Steklov (POMI). 1986;152:137–157.

31. M Padula, VA Solonnikov. On the global existence of nonsteady motions of a fluid drop and their exponential decay to a uniform 
rigid rotation. Quad Mat. 2002;10:185–218.

32. Y Shibata. Global well-posedness of unsteady motion of viscous incompressible capillary liquid bounded by a free surface. Evoluion 
Equations and Control Theory. 2018;7(1):117–152.

33. Y Shibata. On some free boundary problem of the Navier-Stokes equations in the maximal Lp-Lq regularity class, J Diff Eqns. 
2015;258(12):4127–4155.

34. Y Shibata. On the R-boundedness of solution operators for the Stokes equations with free boundary condition. Diff Int Eqns 
2014;27(3/4):313–368.

35. Y Shibata. On the R-bounded solution operator and the maximal Lp-Lq regularity of the Stokes equations with free boundary 
condition In: Shibata Y, Suzuki Y editors. Mathematical Fluid Dynamics, Present and Future. Springer Proceedings in Mathematics 
& Statistics, Vol 183. Springer: Tokyo; pp. 203-285.

36. R Denk, M Hieber, J Prüss. R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Memoirs of AMS. 
2003;166(788).

37. Y Enomoto, Y Shibata. On the -sectoriality and its application to some mathematical study of the viscous compressible fluids. Funk 
Ekvaj. 2013;56:441–505.

38. R Denk, R Schnaubelt. A structurally damped plate equations with Dirichlet-Neumann boundary conditions. J Differential Equations. 
2015;259(4):1323–1353.

39. J Bourgain. Vector-valued singular integrals and the -BMO duality. In: D Borkholder, Marcel Dekker, editors. Probability Theory and 
Harmonic Analysis. New York; 1986. p. 1–19. 

40. Y Shibata, S Shimizu. On the - maximal regularity of the Stokes problem with first order boundary condition; Model Problem. J Math 
Soc Japan. 2012;64(2):561–626.

41. Y Shibata, S Shimizu. On a resolvent estimate for the Stokes system with Neumann boundary condition. Diff Int Equ. 2003;16(4):385–
426. 

42. Y Shibata, S Shimizu. On the - maximal regularity of the Stokes problem with first order boundary condition; Model Problem. J Math 
Soc Japan. 2012;64(2):561–626.

43. Y Shibata. Generalized resolvent estimates of the Stokes equations with first order boundary condition in a general domain. J Math 
Fluid Mech. 2013;15(1):1–40.

http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=aa&paperid=239&option_lang=eng
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=aa&paperid=239&option_lang=eng
https://epubs.siam.org/doi/10.1137/S0036141096299892
https://epubs.siam.org/doi/10.1137/S0036141096299892
http://www.ems-ph.org/journals/show_abstract.php?issn=0232-2064&vol=8&iss=4&rank=3&srch=searchterm%7CSolvability+of+a+noncoercive+initial
http://www.ems-ph.org/journals/show_abstract.php?issn=0232-2064&vol=8&iss=4&rank=3&srch=searchterm%7CSolvability+of+a+noncoercive+initial
https://www.worldscientific.com/doi/abs/10.1142/9789814503594_0004
https://www.worldscientific.com/doi/abs/10.1142/9789814503594_0004
https://www.worldscientific.com/doi/abs/10.1142/9789814503594_0004
file:///C:\Users\mdcrvusr15\Desktop\FMRIJ-18-eBook-220_W\Completed\Mathematics%20of%20the%20USSR-Izvestiya
file:///C:\Users\mdcrvusr15\Desktop\FMRIJ-18-eBook-220_W\Completed\Mathematics%20of%20the%20USSR-Izvestiya
https://eudml.org/doc/219276
https://eudml.org/doc/219276
https://projecteuclid.org/euclid.die/1356039501
http://www.aimsciences.org/article/doi/10.3934/dcdss.2016.9.315
http://www.aimsciences.org/article/doi/10.3934/dcdss.2016.9.315
https://link.springer.com/article/10.1007/BF00375142
https://link.springer.com/article/10.1007/BF00375142
https://www.tandfonline.com/doi/abs/10.1080/03605309908820709?journalCode=lpde20
https://www.tandfonline.com/doi/abs/10.1080/03605309908820709?journalCode=lpde20
https://www.sciencedirect.com/science/article/pii/S0304020808723557
https://www.sciencedirect.com/science/article/pii/S0022247X96903406
https://projecteuclid.org/euclid.kjm/1265899478
http://www.aimsciences.org/article/doi/10.3934/eect.2018007
http://www.aimsciences.org/article/doi/10.3934/eect.2018007
https://www.sciencedirect.com/science/article/pii/S0022039615000406
https://www.sciencedirect.com/science/article/pii/S0022039615000406
https://projecteuclid.org/euclid.die/1391091369
https://projecteuclid.org/euclid.die/1391091369
https://link.springer.com/chapter/10.1007%2F978-4-431-56457-7_9
https://link.springer.com/chapter/10.1007%2F978-4-431-56457-7_9
https://link.springer.com/chapter/10.1007%2F978-4-431-56457-7_9
https://waseda.pure.elsevier.com/en/publications/r-boundedness-fourier-multipliers-and-problems-of-elliptic-and-pa
https://waseda.pure.elsevier.com/en/publications/r-boundedness-fourier-multipliers-and-problems-of-elliptic-and-pa
http://www.math.kobe-u.ac.jp/~fe/xml/mr3157151.xml
http://www.math.kobe-u.ac.jp/~fe/xml/mr3157151.xml
https://www.sciencedirect.com/science/article/pii/S0022039615001217
https://www.sciencedirect.com/science/article/pii/S0022039615001217
https://projecteuclid.org/download/pdf_1/euclid.jmsj/1335444404
https://projecteuclid.org/download/pdf_1/euclid.jmsj/1335444404
https://projecteuclid.org/euclid.die/1356060651
https://projecteuclid.org/euclid.die/1356060651
https://projecteuclid.org/download/pdf_1/euclid.jmsj/1335444404
https://projecteuclid.org/download/pdf_1/euclid.jmsj/1335444404
https://link.springer.com/article/10.1007/s00021-012-0130-1
https://link.springer.com/article/10.1007/s00021-012-0130-1


On the maximal Lp- Lq theory arising in the study of a free boundary 
problem for the Navier-Stokes equations

 66

44. GP Galdi. An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady Problems. Second Edition. Springer: 
Dordrecht Heidelberg, London; 2011. 1018p. 

45. EM Stein. Singular Integrals and Differentiability Properties of Functions. USA; Princeton University Press, Princeton. 1970. 304p.

46. H Amann. Linear and Quasilinear Parabolic Problems. 1st edition, Switzerland: Birkhäuser; 1995. 338p.

47. JT Beale. Large-time regularity of viscous surface waves. Arch Rational Mech Anal. 1984;84(4):307–352.

48. O Steiger. Navier-Stokes equations with first order boundary conditions. J math fluid mech. 8 (2996), 456–481. 

https://link.springer.com/book/10.1007%2F978-0-387-09620-9
https://link.springer.com/book/10.1007%2F978-0-387-09620-9
https://www.jstor.org/stable/j.ctt1bpmb07
https://www.springer.com/la/book/9783764351144
https://link.springer.com/article/10.1007%2FBF00250586
https://link.springer.com/article/10.1007%2Fs00021-005-0184-4

