On thecmammal
L - L theory

- arlsmg in the.
study of a {reGs

' boundary '

problem for the |

1" Navier - Stokes

equation’s

Yoshihiro Shibata

1\C Erave



On the maximal Lp- Lq theory arising in the study
of a free boundary problem for the Navier-Stokes
equations

Authors Information

Yoshihiro Shibata,"? Suma Inna3*

'Department of Mathematics and Research Institute of Science and Engineering, Waseda University, Japan
2Adjunct faculty member, Department of Mechanical Engineering and Materials Science, Univesity of Pittsburgh
*Department of Pure and Applied Mathematics, Graduate School of Waseda Univeristy, Japan

“Department of Mathematics, Faculty of Science and Technology, State Islamic University, Indonesia

*Correspondance:

Department of Mathematics and Research Institute of Science and Engineering, Waseda University, Ohkubo
3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan, Email: yshibata@waseda.jp

Published By:
MedCrave Group LLC
September 17, 2018


mailto:yshibata@waseda.jp

. ‘ ‘ On the maximal L - L theory arising in the study of a free boundary ‘ ‘ .
problem for the Navier-Stokes equations

Contents

1. Acknowledgements 1

2. Abstract 2

3. Introduction 3

4. Reduced Stokes equations 9

5. Model problem in R¥ 11
6. Model problem in RY 14
7. Problem in a bent half space 28
8. Proof of theorem 2.1 35
9. A priori estimate 47
10. Maximal L, -L, regularity 50
11. On the weak Dirichlet problem in RY and RY . 56
12. Regularity of the weak Dirichlet problem 58
13. A proof of Lemma 7.5 61
14. Remark on a proof of proposition 6.1 62
15. References 64




® ‘ ‘ On the maximal L - L _theory arising in the study of a free boundary ‘ ‘ ®
problem for the Navier-Stokes equations

Acknowledgements

My research project was sponsored by (JSPS Grant-in-aid for Scinetific Research (A) 17H0109 and The Global University
Project).




. ‘ ‘ On the maximal L - L theory arising in the study of a free boundary ‘ ‘ ‘
problem for the Navier-Stokes equations

Abstract

Solonnikov' introduced a new system of the linear equations to treat the nonlinear problem obtained by the so called
Hanzawa coordinate transformation to the free boundry problem for the Navier-Stokes equations in order to write it in a
fixed domain. And, he proved the maximal regularity theorem in the L, Sobolev-Slobodetskii space in a bounded domain. In
this paper, we prove the maximal L, — L, regularity for the same linear problem as in Solonnikov' in uniformly C* domains
under the assumption that the weak Dirichlet problem is uniquely solvable. Our approach is to constructR bounded
solution operator for the generalized resolvent problem obtained by the Laplace transform with respet to time variable and
to apply the Weis operator valued Fourier multiplier theorem.2 The procedure in constructing the solution operator is similar
to the theory of parameter elliptic problem.® There are two differences: one is to use the ) norm instead of the usual norm
and another is to handle with the pressure term. Since the pressure term gives a non-local situation, in the localization the
usual cut-off technique can not be used. To overcome this difficulty arising from the pressure term, we use the Grubb and
Solonnikov technique*?® to eliminate the pressure term.

Keywords: maximal L, -L, regularity, R bounded solution operator, uniform C® domain, finite coverning space, the
weak dirichlet problem
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Introduction

Let Q be a uniformly C’ domain with boundary I' inthe N dimensional Euclidean space RY (N >2), and let n be the
unit outer normal to I". This paper deals with the linear problem:

0,v—Div(uD(v)—pl)=F, divv =G=divG inQ x (0,T),
o,p+A, - Vrp—v-n+F vP =D onl"x (0,T), (1.1)
(uD(w)—pI — (B +Ar)p)Dn =H onl” x (0,T),

v, ) li=o = (v, 0) onQxT.

The unknowns are the vector field v=(v,,...,vy)", where M " denotes the transposed M , and the scalar functions p(x,t)
and p(x,t) , while F,G,G,Dand H are prescribed functions, and v, and p, are prescribed initial data. D(v) is the doubled
o,

ov,
rate-of-strain tensor whose (i,j)‘h components are D[f(v):a—f+ ; I the Nx N identity matrix; F a bounded linear
i .

operator from H;(Q) into H,(Q); B abounded linear operator from w2 (r) into W,7"(I"); A the Laplace-Beltrami
operator on I'; V.=V —n(n-V) the tangential gradient on T'. Moreover, x= u(x) and & =&(x) are given C' functions
defined on Q, and A4, (x) is a vector field defined on I" depending on a parameter o <[0,1) . Finally, for any matrix field

K with (i,j)”’ components K., the quantity DivK denotes an N -vector with components Z and also for any

j=1"J t/’
vector of functions w=(w,,...,wy)", we set divw= Z Ow; . Throughout the paper, we assume that

my < u(x),8(x) <my, | V(u(x),6(x)|<m forallx eQ,

(1.2)
IF (V)"H,%(Q) smy "V"H; @’ "BP"W(}‘WI(F) smy "p"qu‘”q(r)

for some positive constants m, and m,. Moreover, we assume that 4, =0 and that for any o< (0,1), 4, satisfies the

assumptions:
| A, ()€ my | A, ()= A, ()< my [ x=pl forany xyeT, |4, 20rp, <mo™  (13)

for some positive constants m,, my, a and b that are independent of o <(0,1), where r is an exponent with ¥ <r<w .
Notice that for o =0, the third equation in (1.1), the kinematic equation, reads

0,p—v-n+Fv=D on I'x(0,T).

Let p=(p,,...,py_;) belocal coordinates on a surface I'"cT" so that I'"" is represented by the equation x=r(p). Let
_or or
o, op, op;’

g be the (i, j))™ element of the inverse matrix G™' of G and let g =+/detG . Then, the Laplace Beltrami operator A. on
I' is defined by

. ,andlet G be an NxN matrix with (i, /) component &; , which is called the first fundamental form of T" Let

1

N-—
o ai(\/_ g/ —f(r(p)))

Moreover, 4, -V, is represented on I'" by

N-1 0
Ao’ VFf = zAmaf(r(p))
i=1 i

with some N —1 vector (4

A EXEED)

A, y-1) - We may assume that 4, = (4,

SR EREEE]

Ay x_1) is defined globally on T".

Problem (1.1) arises in the linearization of the time-dependent problem with a free boundary describing the evolution of
viscous incompressible capillary fluid with a coefficient of surface tension ¢ . In fact, this problem is formulated as follows:

v, +(v-V)v—puAv+Vp=0, divv=0 xeQ,, te(0,7),
(uD(v)—pl)n,=d6Hn,, V,=v-n, xel,, te(0,7), (1.4)
Qt ‘t:0:Q7 V(X:O):VO(X) xeQ.

Where, Q, is the evolution of the reference domain Q attime ¢>0, I', the boundary of Q,, and n, the unit outer normal
to I, . Moreover, V, is the velocity of the evolution of the free surface T, in the », directionand H isthe N -1 times mean
curvature of T, . The equation ¥, =v-n, is the non-slip condition on the free surface. Since Q, is unknown, the so-called
Hanzawa coordinate tranfromation is applied to write Eq. (1.4) in a fixed domain Q. Namely, introducing the unknown

F,=x=y+py.On|lyel} (>0).

function p, we represent I, as
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In this case, the kinetic condition ¥, =v-n, reads
p+<v|Vip>-n-v+0(Vipllv)=0 on I'x(0,T)

Where, <-|-> is the inner product on the tangent space of I' and O(| Vi.p Plv]) denotes the nonlinear part of order 3. If
we move the nonlinear term <v|Vp > to the right side and use the fixed point argument, then we can show the local well-
posedness only in the small velocity case. To handle with the large velocity case, Solonnikov' introduced an approximation
v, of initial data v, , and then writing <v|Vip>=<v_|Vip>+<v-v_|VLp> we have the linearization principle for the
kinetic equation as follows:

P+ <V, |V,p>-n-v=d(v,p). on I'x(0,T)

with d(v,p)=<v, —v|Vrp>+O(|Vp Plv|) . Thus, as a linearized problem of Eq. (1.4), we have (1.1), where < v, |Vip>
is writtenas A -Vpp for c<(0,1).

Problem (1.1) has been studied by Solonnikov' in anisotropic Sobolev-Slobodetskii spaces W;’m in a cylindrical domain
Or =Qx(0,7) under the assumption that Q is a bounded domain with a smooth boundary I'". The purpose of this paper
is to prove the maximal L, — L, regularity of problem (1.1). Namely, the solutions v and p obtained in this paper belong

to the following functional spaces: o | N
v €L, ((0,1),H, ()" )N H,((0,7),L,(D)"),

(1.5)

p e L,((0.7), Hy() N H, ((0,7), H ().
The maximal L, -Lq theory is a main tool to study the global well-posedness of free boundary problems for the Navier-
Stokes equations in unbounded domains. In fact, in the unbounded domain case, only polynomial decay rates are obtained
with suitable space norm pointwisely in time, which guarantees only global in time summability with rather large.5”

As a related topics, the case that 4, = 4, (x,7) has been treated by Priss et al.,*"% in the maximal L, regularity class and
Shimizu et al.," in the maximal L, -L, regularity class. Their problem arises in the linearization of the time-dependent
problem with a sharp interface describing the evolution of two different viscous incompressible capillary fluids. Of course,
their approach is completely different from that in this paper, because they treated the time dependent coefficient case,
while the coefficients in this paper is time independent.

We now state some references for free boundary problems for the Navier-Stokes equtions Eq. (1.4). The problem
has been studied by many mathematicians in the following two cases: Q is a bounded domain or a layer defined by
{x=(x,....,xy) € RY|0< xy <b}. The former is called a drop problem and the latter an ocean problem. When Q is a layer,
the local well-posedness was proved by Beal,'? Allain' and Tani' in the L, Sobolev-Slobodetski space in the 5§ >0 case,
and by Abels™ in the L, Sobolev-Slobodetski space in the 6 =0 case. When Q is a bounded domain, the local well-
posendess is proved by Solonnikov'®'” in the L, Sobolev-Slobodetski space, by Schweizer'® in the semigroup setting,
by Moglilevski'™ and Solonnikov® in the Holder spaces in the & >0 case, and by Solonnikov*' and Mucha et al.,?in L,
Sobolev-Slobodetsk i space and by Shibata et al.,? in the maximal L, —Lq class in the 6 =0 case. Recently, in the case
where Q is a uniformly C* domain and 5 >0, Shibata® proved the local well-posedness in the maximal L,-L, class
under the assumption that the weak Dirichlet problem is uniquely solvable.

When Q is a layer, the global well-posedness was proved by Beale' and Tani®® in the 5 >0 case, and by Sylvester et
al.,’ inthe 6 =0 case. The decay rate was studied by Beale et al.,?” Sylvester?, Hataya?. When Q is a bounded domain,
the global well-posedness was proved by Solonnikov® in the L, Sobolev-Slobodetski i space, by Padula et al.,*" in the
Holder spaces, and by Shibata®? in the L, intime and L, in space setting under the assumption that is Q close to ball
and initial data are small in the § > 0 case, and by Solonnikov®' in the L, Sobolev-Slobodetski i space and by Shibata® in
the maxima L, -L, classinthe =0 case.

To prove the local well-posedness for large initial data, in the above references the Lagrange coordinate transformation
was mostly used to transform the problem to the reference domain. But, if we apply the theory obtained in Shibata®*3 to the
problem obtained by the Hanzawa coordinate transformation, then we need the smallness assumption on initial velocity.
To avoid this, it is necessary to use the linear problem introduced by Solonnikov.!

To prove the maximal L,-L, regularity of Eq. (1.1), our main tool is to use R -bounded solution operators of the
corresponding generalized resolvent problem (1.6) given below and the Weis operator valued Fourier multiplier theorem.?
Thus, the main part of this paper is devoted to proving the existence of R bounded solution operators and the uniqueness
of solutions of problem:

Au—Div(uD(u)—gl)=f, diva =g=divg inQ,
Ah+ A, -Vih—u-n+F u =d onl, (1.6)
(uD(u)—gI-((B +oAr)hH)Dn  =h onl.

QO
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with complex parameter 4 varyingin %, , . Where, we have set

ZMO ={leClargllsm—¢g,| A2 4}
To state the assumptions and main results of this paper, at this point we explain some further notation used throughout
the paper. We denote the set of all complex numbers, real numbers and natural numbers by C, R, and N, respectively.
We set N, = N U {0} . For any multi-index & =(a,,...,ay) € Ny , we set |a |- Ziilaj ,and 8% =801 --- %Y for x=(x,...,xy)
and 0,=0/dx;. For scalar, ¢, and N -vector, u= (u,...,uy)", functions and neN,, we set V'9=(0%¢|al=n),
V'u=(0%u; |al=n,j=1,....N).Inparticular, V’0 =6, V'0 =V, V’u=u, and V'u = Vu. Foranydomain G = R" let L (G),

H}'(G),and B, (G) be the standard Lebesgue, Sobolev, and Besov spaceson G ,andlet |+, ., [|,;m ¢, @nd [«
. T ] 0 . . 4(®) H]'(G) BS 4(G)
denote their respective norms. In particular, we set H, (G)=L,(G), B,,(G)=W,(G), and |- 55,6 = ||-||W;(G) . We use bold

lowercase letters to denote N -vectors and bold capital letters to denote N x N matrices. Forany N vector a, a; denotes
the i component of @ and for any NxN matrix 4, 4; denotes the (i, )" component of 4, and moreover the N x N
matrix whose (i,j)‘h componentis K, is written as (K;) . Let g, be the Kronecker delta symbols, thatis ¢, =1 and ¢, =0
fori#j. 1= (6;) isthe Nx N identity matrix. Fortwo N xN matrices 4=(a;) and B=(b;) , we write 4:B = Z:’jzlaijbﬁ
.Forany N-vectors a and b, let a-b=<a,b>= z:i]aibi. Forany N vector a, let a, =a—<a,n>n . Given two Banach
spaces X and Y, X+Y={x+y|xeX,yeY}, L (X,Y) denotes the set of all bounded linear operators from X into Y,
and L (X,Y) is written simply by L (X). X? denotes the d -product space of X ,thatis X = {x= (Xp5e-05x,) | x; € X}, while
. thatis ||£], = Zfl:l"f,"X For any domain U = C, Hol(U,L (X,Y)) denotes the
setofall L (X,Y)-valued holomorphic functions defined on U . Let R, (v y,({T ()| 4 €U}) be theR bound of an operator
family T (1) e Hol(U,L (X,Y)). Let H}(G) be a homogeneous space defined by H)(G)={0¢<L,,,(G)|VOeL,(G)"}.
Let H),(G) and H,,(G) be spaces defined by X, ,(G)=1{0eX,(G)|0],;=0} for X e {H,H}, where oG denotes the

boundary of G . Let (u,v); = _[Gu vdx and (u,v),; = Iac” -vdo , where v denotes the complex conjugate of v and do the

the norm of X is simply written as

surface element of oG . Let
J(G)={feL (G |(f.Vh);=0 forallpeH (G)}. (1.7)
Let
C,,={1eC|Redza}, . ={AecC\{0}|argil<z—¢g}, Z,,={AeX, |Azq}.

For 1< p<w, L,((a,b),X) and H} ((a,b),X) denote the standard Lebesgue and Sobolev spaces of X -valued functions

defined on aninterval (a,b), and |+, .0 and |«,,m denote their respective norms. For 8 € (0,1) , Bessel potential
pa:2) P

(a,b),X)
spaces H[f(]R,X) are defined by

HJRX)=1f € LR[00, = IF "10+2)72F (/1)

Here, F and F ' denote the X valued Fourier transform and its inverse formula on R. C denotes a generic constant
and C,,. denotes that the constant C,, . depends on a,b,c,...The value of C and C,,. may change from line to
line.

< oo},
L, (R,X)

We now introduce several definitions.

Definition 1.1: Let Q be a domain in R" with boundary 6Q . We say that Q is a uniformly C* domain, if there exist
positive constants «, 8 and K such that for any x, = (x,,,...,%,y) € 8Q there exist a coordinate number j and a C* function
h(x') (X' =(xp..0,%)50.0,xy)) defined on B, (xy) with xg = (xg,... Xy - ) @nd ||h||H§0(BW0,» <K such that

QN By(x)) ={xeRY|x;>h(x)(x"€ B, (x))} N By(xy), (1.8)
0Q N By(xy) =ixe RY | x; = h(x')(x" € B}, (x))} N Bs(x,)-

Here, (xl,...,fcj,...,xN)=(x1,... X 1,X

X eeendy) s By) = 0 € RV 3 —xy [< @} and By(x,) = (xeRY [ x—x,|< ).

Definition 1.2: Let X and Y be two Banach spaces. A family of operators T c L (X,Y) is called R -bounded on
L (X,Y), if there exist constants C>0 and p [1,0) such that for each natural number n, {T;}"_, T ,and {f;}},, c X

there holds the inequality:
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<C Zn:rj(u)fj

j=1

(1.9)

@S,
j=1

Lp ((0,1),Y)

The smallest such C is called R -bound of T on L (X,Y), which is denoted by R, yy,(T ). Here the Rademacher
functions #,, ke N, are given by 7, :[0,1] > {-1,1}, t > sign(sin(2* 7¢)) .

L, (0.1).X)

Remark 1.3 The definition of R -boundedness is independent of p e[1,%) (cf. [36, p.26 3.2. Remarks (2)]).*

Definition 1.4: Let 1< ¢ <o . We say that the weak Dirichlet problem is uniquely solvable on H1 0(Q) , if the following
assertion holds: Forany felL (Q)N there exists a unique 6 e H 0(€) which satisfies the varlatlonal equation:

(VOVh)o=(fVh), forallpeHy (@),  (1.10)

and the estimate: |[vo|, , <C,|/] for some constant C, independent of 1,6 and ¢ , We define a bounded linear

g = Tl @ q

operator K, e L (L ()", H,,(€) by letting K,(f)=6.

Remark 1.5:

(1) Given f e Lq(Q)N and ge Wq"”"(l“) , there exists a unique u € H;(Q)+1§;,O(Q) that satisfies the variational equation:
(Vu,Vé)o = (/. Vh)q forany peHyo@)  (1.11)

subject to u=g on I'. In fact, choosing ger(Q) in such a way that g|.=g, we see that u=g+K,(f-Vyg) is a

required function. Obwously, "Vu"L y=e (||g||W1 uqm+||f||L () - We define a linear operator K; by K(f,g)=u. In
particular, H' () +H (Q) is the space for p in (1 1)and g in (1.6).

(2) In applications for our theorem stated below, it is important to prove the weak Dirichlet problem is uniquely solvable. For
example, this holds for bounded domains, exterior domains, half-spaces, bent half-spaces, layer domains, tube domains,
etc.

Since H,(q) is usually not dense in H,(Q), it does not hold that divu=divg implies (u,Ve), =(g.Vp), for all peH(Q).
Of course, the opposite direction holds. Thus, finally we introduce the following definition.

Definition 1.6: For u, ge L ()", we say that divu=divg in Q if there holds that (u,Ve), =(g,Ve), forall (peﬁav’o.

To solve the divergence equation divu=g in Q, itis necessary to assume that g is given by g =divg for some g, and
so we define the space DI, (G) by

DI(G)={(g.2)| g € H,(G),g € L,(G),g = divginG},
where G is any domain in RY .
We now state main results of this paper. We first state the existence theorems.
Theorem 1.7
Let 1<g<w and 0<e&<7x/2.Assume that the following conditions are satisfied:
Q is a uniformly C?* domain;
u and § are real valued functions satisfying the assumptions (1.2);
The weak Dirichlet problem is uniquely solvable on I-AI;,O(Q) ;
4,=0 and 4, isan N -1 vector of real valued functions with parameter o <(0,1) satisfying (1.3).
Set
X, Q) ={(f.g.8d.h)[feL ()", (g.8) e DI, (Q).deW; " (),he H(Q"};
X Q) ={(F... )| B F e L)Y F, e WD), Fy e Hy()",

Fy e L(Q),F, € H(Q)}; (1.12)
2,5 foro=0, 1 foro=0,
Ay =4 Yo =
40 (CMO foro €(0,1), o’ foro € (0,1).

o
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Then, there exist a constant 4, >1 and operator families:
A (A) eHol(A, 4, L (X, (Q),H; (")), P(A)eHol(A
H (1) e Hol(A
. and (f.g,g.d,h)e X, (Q),
u=A(DF,(f.g.8.d.h).g =P (V)F,(f.g.8.d.h),h=H (VF,(f.g.8.d.h),
are solutions of (1.6), where

o iore b X (L HY Q)+ H, (),
L (X, (Q), H} ()

.07

such that forany 1e€A,

Fﬂ(f»gugadah) = (fsdaﬂl/zhahvﬂ“”2gog7;{‘g)7 (1 13)
and
) o (GO PAGN 22 Ay D0,

L (Xq(Q).H,

‘
R oy sy, (170 VP (D12 € A D <1,

({(z0,) A H ) AeA, 4, D)<t

L (Xg @13~ * ()

for £=0,1, j=0,1,2 and k=0,1. Here, r, is a constant depending on m,,m,,m,,m;,K,c, 3,qand N but independent of
ce(0,1).

Remark 1.8: In this paper, F.F,,F.F,,F;,Fyand F, are corresponding variables to f,d,A"*h,h,A"*g,gand Ag
respectively. The norm of space X (Q) is given by

s F ey =N oo D, oy #1310 i Ely
Using Theorem 1.7 and the Weis operator valued Fourier multiplier theorem,? we have the following theorem.
Theorem 1.9: Let 1< p,gq<o,and T >0.Assume that 2/ p+1/q#1 and that the conditions i — iv stated in Theorem 1.7
are satisfied. Let u, € B(""”(Q) and p, e, ,"77"4(I") be initial data for problem (1.1) and let F, G, G,, D, and H be
functions appearing in the right hand side of problem (1.1) with
FeL,(0.1),L, ("), GeL,[RHy(D)NH,*RL(QY). GeH,RL ",
2-1/ 1 N 1/2 N
DeL,(0,1).w, (), HelL,(RH, ()" )NH, (R,L (")
We assume that u,, G, and H satisfy the following compatibility conditions:
div uy, = div G|t:0 in Q. In addition, (1D (uy)n);=(H|-y)zon I when p/2+1/q<L. (1.14)

Then, problem (1.1) admits solutions v, p and p with

ve H,((0.7),L, (") "L, (0.T), H; ("), peL,(0.T),H,(Q)+H,,(€),
peH,((0.T),H; ()N L,((0.T),Hy (),
possessing the estimate:

“loot,,

"v"Lp (©.7),HZ () ©n.Lg@) " e "Lp (O.T),Hg ()

+low "Lp((o,r),H%m» < CeCyJT(||“0||B§,(5”p o elP 0"33,}}/” 4y
Cert (1.15)
+||e g (G,H)||

+ "F"Lp (O.1).Lg () + "D"Lp nwF 1wy Ly (R HY (@)

e

" e ||
1/2 t
Hp“(R.Ly () Lp(R,Ly ()

for some positive constants C and ¢. Where, C and c in (1.15) are independent of o €(0,1), and y, is the number
given in Theorem 1.7.

We next state the uniqueness theorems. In this paper, we say that the uniqueness holds for Eq. (1.1) if the following
assertion is valid:

If v,p and p with .
ve L, ((0,7),Hy (") N H,((0,T),L, (DY), peL,((0,T),Hy(Q)+H,(Q)),

peL,((0.7),W, " (T) ~ H),((0,T),w,; "))
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satisfy the homogeneous equations:

0,v—Div(uD(v)—pI)=0, divv =0 inQ x (0,T),

O,p+A, Vpp—v-n+Fv =0 onl"x (0,T), (1.16)
(wuDW)=pIl —(B+Ap)p)hn =0 onl % (0,T),

,0) =0 =(0,0) onQxT,

then, v=0 p=0,and p=0.

And also, we say that the uniqueness holds for Eq. (1.6) with U , where U is a subset of C, if the following assertion is
valid:

Let AcU .If u, g and h with
ueHJ(Q), qeH)(Q)+H,(Q), heW, " I)

satisfy the homogeneous equations:

Au—Div(uD(u)—gl)=0, divu =0 in Q,
Ah+ A, -Vih—u-n+F u =0 onT, (1.17)
(uDW)—gl — (B +oAp)h))n =0 onTl,

then u=0, ¢g=0 and h=0.

In the case where 4, =0, Fu=0, Bh=0, and O is a positive number, the uniqueness for Eq. (1.6) follows from the
existence theorem for the dual problem. Moreover, the uniqueness for Eq.(1.1) can be proved by applying the uniqueness
theorem for Eq. (1.6) to the Laplace transform of solutions with respect to time variable. Thus, we have

Theorem 1.10: Assume that 4, =0, Fu=0, BkA=0, and § is a positive constant, and that the conditions i and ii
stated in Theorem 1.7 holds. In addition, we assume that the weak Dirichelet problem is uniquely solvable on H;,,O(Q) with
q'=q/(qg-1). Then, the following assertions about uniqueness hold:

Let 1<g<w and 0<e&<z/2.Then, there exists a 4, >0 such thatforany A1€ZX, ,; , the uniqueness holds for Eq. (1.6).
Let 0<T <w and 1< p,q <. Then, the uniqueness holds for Eq. (1.1).

But, in the general case,, we do not have suitable dual problems, and so we prove the uniqueness by showing a priori
estimates. In particular, we need a restriction on Q.

Theorem 1.11: Assume that Q is a uniformly C* domain whose inside is finitely covering, the definition of which will
be given in Sect. 7 below. Moreover, we assume that the conditions ii—iv are satisfied. Then, the following assertions
concerning the uniqueness hold.

Let 1<g<ow and 0<e<xz/2. Then, there exists a 4,>0 such that for any A€ A, , the uniqueness for Eq. (1.6)
holds.

Let 0<T <w and 1< p,q <. Then, the uniqueness for Eq. (1.1) holds.

Remark 1.12: If Q is a bounded domain, an exterior domain, a half space, a perturbed half space, a layer, a perturbed
layer, and a tube, and if the boundary of Q is a hypersurface of C* class, then Q is a uniformly C* domain whose inside
is finitely covering (cf. Example 7.2 in Sect. 7 below).

The paper is organized as follows: In Sect. 2, a reduced Stokes operator is introduced to eliminate the pressure term p
from Eq. (1.1). And, we prove equivalence between Stokes operator and reduced Stokes operator. In Sect. 3, the existence
of R bounded solution operators is proved for the model problem in R" . In Sect. 4, the existence of R bounded solution
operators is proved for the model problem in Rf . In Sect. 5, the existence of R bounded solution operator is proved in a
bent half space. In Sect. 6, the existence of R bounded solution operator is proved in a uniform C* domain by constructing
a parametrix. In Sect. 7, we prove a priori estimates of solutions to Eq. (1.6) and as a result, we obtain the uniqueness
for Eqg. (1.6). In Sect. 8, the maximal regularity theorem is proved by applying the Weis operator valued Fourier multiplier
theorem to the representation formula of solutions to Eq. (1.1) obtained by using the R bounded solution operator. And
also, the uniqueness for Eq. (1.1) is obtained by applying the uniqueness for Eq. (1.6) to the Laplace transform of Eq. (1.1)
with respect to time variable. In Appendix A, a unique existence theorem for the weak Dirichlet problem is proved in RY
and Ri’ . In Appendix B, the regularity theorem for the weak Dirichlet problem is proved. Notice that the uniqueness of
strong solutions does not hold in general. In Appendix C, some Poincarés’ type inequality is proved. Finally, in Appendix D,

several properties of uniform C* domains are proved.



® ‘ ‘ On the maximal L - L _theory arising in the study of a free boundary ‘ ‘ ®
problem for the Navier-Stokes equations

Reduced Stokes equations
Equivalence of stokes problem and reduced stokes problem

Since the pressure term p has no time evolution, we eliminate p and the divergence equation: divu = g = divg foIIowing
the idea due to Grubb et al.,4 Abels et al.® For this purpose, we introduce the reduced Stokes equations. Given u H @Y
and heW,"4(I'), let K(u,h) be a unique solution of the weak Dirichlet problem:

(VK (u,h),V@)q = (Div(uD(u)) - Vdivu,Vp), for anyg Hq',o (9)] (2.1)
subject to
K(u,h) =< uD(u)n,n>—-(B + 6Ap)h—diva onT. (2.2)
By Remark 1.5 1, we know the unique existence of K(u,h) e HI(Q)+1:I;’O(Q) satisfying the estimate:
||VK(u,h)||Lq o <M, (||Vu||H @ +||h||W;71/q ) (2.3)

for some constant M, > 0. We consider the reduced Stokes equations:

Au—Div(uD(u) — K(u,h)I) = f inQl,
Ah+ A, -Vih—u-n+Fu=d onl, (2.4)
(uD(u) = K(u,h)I-((B +Ap)h)Dn=h onl.

Notice that the third condition in (2.4) is equivalent to
(uD(u)n), =h, and divu=n-h onT. (2.5)
In fact, by (2.2)
h-n=< uD@)n,n>-K(u,p)—(B +Ar)h=divu onT.

We now discuss the equivalence between (1.6) and (2.4). We first assume that Eq. (1.6) is uniquely solvable. Let
feH (", dew,; () and he H,(Q)". Let g H}(Q) be a unique solution of the variational equation:

Mg 9o +(VE,VP)g = (-/.V9)q for anyp e Hy () (26)
subjectto g =n-h on T".The unique existence of g is guaranteed for 1 € X, , Withlarge 4,>0.From (2.6) it follows that
(8:0)0 = (A7'(f + V).V e)q, (2.7)

and so divg=g with g=17'(f +Vg). Let uec H(Q)", pe H)(Q)+H,,(©Q) and hew;'"(I') be unique solutions of Eq.
(1.6). In view of Definition 1.6, we have

(.V9)o =(8.Vp)o for anyp e Hy (9. (2.8)

Testing q)eﬁ;qo(ﬂ) , from Eq. (1.6) we have
(f,V@)q = (Au = Div(uD(w)) + Vg,V @) = (Au,V @), — (Vdivu,Vp)g +(V(g — K(u,1)),V@)q,.

Using divu=g and (2.8), we have

(Au,V)g = (Vdivu,Vp)g = A(g,Ve)q —(VE,Ve)q = (£, Ve),,
and so, we have

(Vg =K (u,h).Vp)g =0 foranyp e Hy ().
Moreover, by (2.2), (2.6), and the boundary condition in Eq. (1.6)
g —K(u,h) =< uD(u)n,n>—(B + oAr)p —nh—< uD(wn,n > +(B + A, )h +divu
=divu-n-h=g—-g=0

on I'. Thus, the uniqueness implies that 4 = K(u,4) , which yields that u and h are solutions of Eq. (2.4).

Conversely, we assume that Eq. (2.4) is uniquely solvable. Let f e L ()", (g.g) € DI,(Q), d e W, "(I') and he H,(Q)"
in Eq. (1.6). Let 8 H (Q)+H1 0(€) be a unique solution of the weak D|r|chlet problem

(VO.Vp)o =(f.Vp), for anypeHy,(Q), (2.9)

subjectto #=-n-h on I', and then using 6 we write Eq. (1.6) as

(O
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Au—Div(uD(u)-(g-0)))= f-VO, divu =g=divg in Q,
Ah+ A, -Vih—u-n+F u =d onT, (2.10)
(uDW)— (g —N)I1—-((B +oAp)R)Dn =h, onT.

Let Le H;(Q) + I—Al;,O(Q) be a unique solution of the weak Dirichlet problem:
(VL,V@)y =(1g-Vg,Vp), for anype 1311130(9) (2.11)

subjectto L=—g on I'.Let ueH,(Q) and heW, "*(') be unique solutions of the equations:

Au—Div(uD(u) - K(u,h))=f -VEO+VL in Q,
Ah+ A, -Vih—u-n+F u=d on T, (2.12)
(uD(u) — K (u,h)I = ((B + AL )Yh))n=h on T,

where h=h_+gn, thatis h.=h_and h-n=g . Testing pe ﬁ;v,o(Q) in Eq. (2.12) and using (2.9), we have
(VL,V@)o = (Au —Div(uD(u) — K(u,h)I),V@)o = A(1,V@), —(Vdivu,Ve),,
which, combined with (2.11), leads to
Ag,V)o—(Vg,V)o = Au,Ve)—(Vdivu,Vp), foranype I:I;,‘O(Q). (2.13)
Since H) ((Q) < H), ,(Q), by (2.13) and g =div g, we have
A(divg —divu, @) + (V(divg —divp), Vo), =0 for anyp H;',o Q).
Moreover, by (2.5)and #-n=g on I', we have
divu—divg=h-n-g=0 onT.
Thus, the uniqueness of solutions for 1€ X, ; with large 4,>0 yields that g = divg = divu . Thus, by (2.13) we have
(8.V9)o = (.Vp)g for anyp e Hy (@)
whenever 4 e EMO . Thus, div u=g=divg in Q.By (2.12), (2.5) and (1.9)
(vD(wn), =h,,
&,y,my,m,q and N
Recalling that g =-L (cf. (2.11))and 9=—h-n (cf. (2.9)), we have
n-h=—-0+L+< uDu)n,n>-K(u,h)—(B +Ap)h
=< uD(u)n,n > —(K(u,h) + 60 — L) — (B + A ).
On the other hand, by (2.12)
f = Au—Div(uD(u) — (K(u,h)+ 6 — L)) in Q.
Thus, u, p=K(u,h)+0—L and h are unique solutions of Eq. (1.1).
R-bounded solution operators for the reduced stokes equation

In the following, for the reduced Stokes equations (2.4) we prove the existence of R bounded solution operators as
follows.

Theorem 2.1: Let 1<g<w and 0<s<z/2.Let A, ; be the set defined in Theorem 1.7. Assume that the conditions
i—iv in Theorem 1.7 are satisfied. Set
Y(@Q={(f.dh) | feL (@, deW " (T)he Hy ("},

) (2.14)
Y, (Q={(F,....F,) |F.FeL, Q" F,ew " (I),F,eH ()"}

Then, there exist a constant 1. >1 and operator families:

A, (D) eHol(A, ,,, L (Y, (QLHJ(Y), H,.(A)eHol(A,,, L (Y,(Q).H} ()

0. MY 0. M7s

such thatforany AeA, ,, and (f.d,h) e, (Q),
u=A()(f.d,2"*hh), h=H_(A)(f,d, A" h),
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are solutions of (2.4), and

(yqjl2
s oyt ((E0Y GIPA D12 € A D <

Crak
L vy @it (Q))({(Iﬁ,) (AH, (NN Ae N 4, D) ST
for ¢=0,1, j=0,1,2 and x=o0,1. Here, 5, is a constant depending on m,, m,, m,, m,, A, p, g and N but independent of
oe(0,1), and y_ is the number defined in Theorem 1.7,

Remark 2.2 The norm of space v, () is defined by [(f:d:b, o, =IIfl,, @) *l14lly2-4 ) + ], @) and the norm of space
Y, () is defined by

H(FI’FZ’FDF‘t)qu(Q) = H(FDFS)HLq(Q) + HFZHWqZ’”q(r) + “F4“W;(n)'

Remark 2.3 As was pointed out in Subsec. 1.9, if # and % are solutions of Eq. (2.12), then u, & are also solutions of
Eq. (??) with p = K w)+6—L , and so Theorem 1.7 follows immediately from Theorem 2.1.

Model problem ingr”
Constant # case

In this subsection, we assume that u is a constant satisfying the assumption (1.2), thatis m, < u<m,. Given u e H;(R")",
let u=K,(u) be a unique solution of the weak Laplace problem:

(Vu, V) y = (Div(u(D(w) = Vdivu,Ve) for anyp AL (RY). (3.1)
In this subsection, we consider the resolvent problem:
Au—Div(uD(u) - Ky(w)) =f in RY, (3.2)
and prove the following theorem.
Theorem 3.1: Let 1<g<w, 0<g<z/2, and 4,>0. Then, there exists an operator family
Ay(A) e Hol(2, L (L,(R™)Y,HZ(R")")) such that for any A=y+ire 25”10 and ferz, (RV)", u=Ay(A)f isaunique
solution of Eq. (3.2) and
Ly @ s oy (@) (A | A €2, 50 ) <1y (o) (33)
for r=0,1 and j=o0,1,2, where 5, (4,) is a constant depending on &, 4,,m,,m,,q and N, butindependent of ue[my,m,].
Proof: We first consider the Stokes equations:
Au—Div(u(D)—gl)=f, divu=g=divg inR". (3.4)
Since Div(uD(u) - ¢1) = puAu + uVdivu — Vg , applying div to (3.4), we have
Adivg —2uAg + Ag = divf,
and so,
g =2ug + A" (divf — Adivg).
Combining this with (3.4) gives
Au— pAu =f —VA~'divf — uVg + AVA divg. (3.5)
We now look for a solution formula for Eq. (3.2). Let g be a solution of the variational problem:
(28.9) n +(V&.V9) .y = (~£.Vp) y for anyp e Hy (R™),

and then this g is given by g=(1-A)"divf . According to (2.7), we set g=1"'(f +Vg) . Inserting these formulas into
(3.5) gives

Au—pAu= f—(u—-1)Vg==f—(u—-1)A-A)"'Vdif.

Thus, we have
g&-F 19
(A+u EPYA+|EP)

F [f1(5)

u:Ffl[
S Avulep

1+ (u=DF

]’

where F and F,' denote the Fourier transform and its inversion formula defined by

O
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—ix- — 1 ix-
F LU = [ e ™ f)dx, F (@)= Gy dae Ca e
Thus, we define an operator family A,(2) actingon f e (RY)Y by
F L1 s &6-F L1
——— S+ (u-DF [ :
At ul &P T+ uEPAFIED)
To prove the % -boundedness of A,(1), we use the following lemmas.

A f=F

Lemma3.2: Let 0<e<z/2.Then,forany 1eX, and xe[o0,x), we have
|d+xf> (sin%)(| A +). (3.6)
Proof : Representing 1 =| 1|¢" and using cos@ = cos(r — &) =—cose for 1eX,, we have (3.6).

Lemma 3.3: Let 1<g <o and let U be a subset of C. Let m=m(4,&) be a function defined on U x (R \ {0}) which is
infinitely differentiable with respect to £<RY \ {0} for each ieU . Assume that for any multi-index « e N} there exists a
constant C, depending on ¢ such that

|0Zm(2,&) < C, | £ (3.7)
forany (1,&) e U x(RY \{0}) . Set
b(m) = max Ca'
|@|<N+1

Let K, be an operator defined by

K, f =F: ' [m(2,9F LS.

Then, the operator family {K, |1 €U} is R -bounded on L (L (R")) and
R, gy (K2 12 €U S Cy ybiom)
for some constant C, v depending solely on ¢ and ~.

Proof: Lemma 3.3 was proved by Enomoto et al.*” and Denk et al.*® By Lemma 3.2, we have

ﬂj/zfﬂ . é:é: ﬂ/‘/zé;ﬂ
% <C | k/z, 8% (Sm
T L R Sy oy

forany jeN,, keN, and geN} suchthat j+#4+|g=2 and for any aeN; and (A.E) e, ;o x(RV\{0}). Thus, by
Lemma 3.3, we have (3.3), which completes the proof of Theorem 3.1. We conclude this section by introducing some
fundamental properties of R -bounded operators and Bourgain’s results concerning Fourier multiplier theorems with scalar
multiplieres.

kC, | %2 (m=1,...,N)

Proposition 3.4

a) LetX and Y beBanachspaces,andletT and S be R -boundedfamiliesin L x,v).Then, T +S ={T+S|TeT ,SeS}
is also an R -bounded family in L (x,y) and R xn (T +S) <Ry x )T )+ R (x 1) (S)-

b) Let X, Y and Z be Banach spaces,andlet T and S be R -bounded familiesin L (x,y) and L (v,z), respectively.
Then, ST ={ST|TeT ,SeS} alsoan R -bounded family in L (x,z) and R, (.2, (ST )<R, x v)(T IR, (v.2)(S).

¢) Let 1<p.g<w andlet D be a domainin R".Let m=m(2) be a bounded function defined on a subset v of C and
let M, (1) be amap defined by M, (1) =m(A)f forany fer, (D). Then, R, gy (M, (D[ AeUN<Cy ||m||Lw(U) .

d) Let n=n(r) be a C'-function defined on R\ {0} that satisfies the conditions |x(z)|<y and |zx'(r)|<» with some
constant ¢>0 for any r< R\ {0} . Let 7, be an operator-valued Fourier multiplier defined by 7,/ =F ~'(nF [f]) for
any f with F[f1eD (R,L,(D)) . Then, 7, is extended to a bounded linear operator from L (Rr,L, (D)) into itself.
Moreover, denoting this extension also by 7', we have 17,1, (g oy < Cra.n?:

Proof: The assertions a) and b) follow from [36, p.28, Proposition 3.4], and the assertions c) and d) follow from [36, p.27,
Remarks 3.2].%6:%

Perturbed problem in R"

In this subsection, we consider the case where 4(x) is a real valued funtion satisfying (1.2). Let x, be any pointin Q and
let d, be a positive number such that B, (x,) Q. In view of (1.2), we assume that

| 1(x) = pxy) [< my M, for x € By (xo), (3.8)

Q
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where we have set M, =d,. We assume that A, (0,1) below. Let ¢ be a function in C;(R") which equals 1 for
x € B, ,(x) and 0 outside of B, (x,) . Let

A(x) = ¢(x) p(x) + (1= p(x)) (x,).- (3.9)
Let K,(u)e H(R") be a unique solution of the weak Laplace problem:
(Vu,Vo) y = (Div(AD(w)) = Vdivu,Ve)_y for anyp < ﬁ;,(RN). (3.10)
We consider the resolvent problem:
Au—Div(iiD(u) — Ky(w)D) = £ in RN, (3.11)
We shall prove the following theorem.
Theorem 3.5: Let 1<g<w and 0<s<z/2.Then, there exist M, €(0,1), 4,>1 and an operator family A (1) with
Ay(A) € Hol(Z, 5. L (L, R")", Hy(R")"))
such that forany AeX, , and feL, (R")", u=A(1)s is a unique solution of Eq. (3.11), and
L (Lq(]RN)N,Hg—j(RN)N)({(Tar)/(ﬂ'j/zAO(ﬂ')) [AeX, ) <H,
for ¢r=0,1 and ;=0,1,2. Where, 7 is a constantindependent of A7, and 4, .
Proof : Let u=K, (u)e H}(R") be a unique solution of the weak Laplace equation:
(Vu,Vo)_y = (Div(u(x,)D(u) - Vdivu,Ve)_ for anyp e AL (RY). (3.12)
We consider the resolvent problem:
Au—=Div(u(x)D@) — K, @) =f in RN, (3.13)

Let B, (1) e Hol(Z, L (L,(R")",H2(RY)")) be asolution operator of Eq. (3.13) such thatforany 4 ez, and fe L, (R")"
u= Bx0 (4)f is a unique solution of Eq.(3.13) and

lyqjl2
sy, (0 A BL D 2 €2, D <70 (3.14)

for ¢r=0,1 and j=o0,1,2, where y, is a constant independent of A, and v¢ . Such an operator is given in Theorem 3.1
with = u(x,) and 4, =1. Inserting the formula: u =B, (1)f into (3.11) gives

Au—Div(ii(x)D(u) - Ky(w)D) =f —R (1) f in RN, (3.15)

where we have set
R =Div(a(x)D(B,, (A)f) — u(xy)D(B,, (1))

. (3.16)
_V(KO(B):O (ﬂ’)f) B Kx() (Bx(] (ﬁ’)f))
We shall estimate R (1) . For any ¢ e H,,(R"), by (3.10) and (3.12), we have
(V(Ko(Byy (D)) = Ky (B (DI N.VP) v = (Div(((x) = t(xo))D(B, (D). VIR
Since ji(x) — u(x,) = e(x)(u(x) — p(x,)) , by (3.8) and (1.2), we have
[Pivica - ucn D@, DD, v, <MTBL DI, )+ o[BI, -
Here and in the following, C,, y,, denotes a generic constant depending on m, and HV¢HL°C(RN) . Thus, we have
IR, w5, <CM,|V*B,, (%) fHL &y * o, vo VB, (], Ly (3.17)

Here and in the following, ¢ denotes a generic constants independent of A7, , m,, and HVgoHLw(RN Let 2, be any number
>l andlet neN, {4}/, c(= and {F,};_, (L, (R™M)M)". By (3.17), (3.14) and Proposition 3.4, we have

J

SZ‘HM‘II
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q
1
<2'mif du

N
Lg(®Y)

Z”k (V)VZBXO (A,
k=1

q
du

N
Lq(®Y)

_ _ 1| &
+2‘1 lczq ,V(p% ‘1/2'[0 Zrk (u)ﬂ’ll/ZVon (ﬂ’k)fk
k=1

q
du.
Lg®Y)
Choosing M, so small that 29" M{/y¢ <(1/2)(1/¢)* and 4, >1 so large that 277'C}, 784,/ <(1/2)(1/2)?, we have

1
R R e ] )

>,
k=1

i (Lq(RN>({R (D] Aez, , H<1/2.

Analogously, we have
| (Lq(RN)({ra,R (M| AeZ, <172,

Thus, (-RA) ' =1+ Zjole (1)’ exists and

)({(2'8,)[(1 —R(A)'[AeZ, ;1) <4 for (=0,1. (3.18)

L(Lg(RN

Setting A:)(i) =B, (W) -R (A1), by (3.14), (3.18) and Propsoition 3.4, we see that R, (1) is a solution operator satisfying
the required properties with 7 =4y, .

To prove the uniqueness of solutions of Eq. (3.11), let u € H;(RN)N be a solution of the homogeneous equatuion:
Au—Div(iD(u) — Ky(w)) =0 in RN,
And then, u satisfies the non-homogeneous equation:
Au = Div(u(x))D(u) = K, )]) = Ru in RN, (3.19)
where we have set
Ru = =Div(((x) — p(x))D(w)) + V(K () = K (w).
Analogously to the proof of (3.8), we have

[Rul, vy < CMV2], v+ ooVl v, (3.20)

Ly ®Y
On the other hand, applying Theorem 3.1 to (3.19) for 1cx_,, we have
|2 el vy #1212 el vy + Bl vy < R v (3.21)
Combining (3.20) and (3.21) gives
(%~ CCm1,V¢)"u"H}1(RN) +(1- CMI)"“"H,%(RN) <0.

Choosing M, €(0,1) so small that 1-CM, >0 and 4,>1 so large that 4)> - cc

m.ve >0, We have u=0. This proves the
uniqueness, and therefore we have proved Theorem 3.5

Model problem in RrY

In this section, we assume that x4, §, and 4, (o <[0,1)) are constants and an N —1 constant vector satisfying the
conditions:

my < w,6<my, A,=0, |A4,|<my(ce(0,1)). 4.1)
Let
RY ={(x,....x5) eRY | xy >0}, RY ={(x,,....xy) e RY [ x, =0}, n,=(0,...,0,—1).

Given ueH (RY)" and hew,"I(RY), let K,(u,h)eH,(RY)+H,(RY) be a unique solution of the weak Dirichlet
problem:

(VK, (u,h),Vgo)Riv = (Div(uD(u)) — Vdivu,V(p)R]X for anygp e IA{L,’O RM), (4.2)

subject to K, (u,h) =< uD(u)ny,n, > -6A'h—diva on R}, where A'h :Z’\_”lazh/axf. In this section, we consider the half

space problem: -
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Au = Div(uD(u) — K, (u, 1)I) =f in RY,
Ah+ A, -V'h—u-n, =d on RY, 4.3)
(uD(u) - Ky (u,h)Dn, —S(A'h)n, =h on RY,

where V'=(9,,...,0,_,) - The last equations in (4.3) are equivalent to
(uD(u)ny), =h, and divu=h-n, onR}.
Where, we have set 4_=h— < h,n, > n,.. We shall show the following theorem

Theorem 4.1: Let 1<4<wx, let 4, 6, and 4, are constants and an N -1 constant vector satisfying the conditions
in (4.1). Let A, the set defined in Theorem 1. 7. Assume that the conditions in (4.1) hold. Let ¥ (RY) and Y,(R}) be
spaces defmed by replacing Q and T by RY and R} in (2.14). Then, there exist a constant A >1 and operator families:

Ag(A) e Hol(A, ;L (Y, (RY),HF(RI)Y)), Ho(A)eHol(A, 4 ,L (Y,(RY),H}(RY))) (4.4)
such that forany A=y +ireA,, and (f.d.h)eY,RY),
u=A,(f.d,Ah k), h=H A)(f.,d, 2", k),
are unique solutions of (4.3), and
({(@,) (AA AN A e Ay 1) <1,

Loy @Yy @)

/ (4.5)
({(@,) (A Ho(A) | A e Ay 1) <1,

LYy @) g F @Yy
for r=0,1, j=0,1,2 and x=o0,1.Here, 5 is aconstant depending on m,, m;, m,, 4,, ¢ ,and N.

Remark 4.2: In this section, what the constant depends on m,, m,, m, means that the constant ¢ depends on m,, m,, m,
but is independent of u, 5 and 4, whenever ue[m,,m], & e[m,,m],and | 4, |<m, for c<[0,1).

To prove Theorem 4.1, as an auxiliary problem, we first consider the following equations:

{ﬂ.v—Div(,uD(v)—HI)—O, divv=0 ianj, (4.6)

(uD() -0y = h on Ry,
and we shall prove the following theorem, which was essentially proved by Shibata et al.*°
Theorem4.3Llet 1<g<w, £c(0,7/2),and 4,>0. Let
Y, RO ={(F.F)IF eL,RDY, FeH, R,
HyRY)={0 e L1, (RY)| VO e L,(R})}.

Then, there exists a solution operator V(1) e Hol(Z, ,.L (Y'(RY),H;(RY)")) such that for any 1=y+ireX, , and
he Hy(RY)Y, v=V(4)(A"*h,h) are unique solutions of Eq (4.3) with some 6 A (RY) and

(1@, WV (A | A eX, 1) <1,y

for ¢=0,1,and j=o0,1,2.Here, r,(4,) is a constant depending on m,, m;, m,, &, 4,, N,and g .

Ly @& Hg T @Y)Y)

Proof: To prove Theorem 4.3, we start with the solution formulas of Eq. (4.3), which were obatined in Shibata et al.,*
essentially, but for the sake of the completeness of the paper as much as possible and also for the later use, we will derive
them in the following. Applying the partial Fourier transform with respect to x' = (x,,...,x,_,) to Eq. (4.3), we have

M+ | &P =040, +i&,0=0, Aoy +u|&F -0y +0y0=0  (xy>0)
Z«:,v +0yPy =0 (xy>0), @.7)
u@y; +is ) =g, 2,LlﬁNVN—é =gy for x=0.

Here, for 7= f(x'.xy), ¥ =(x,....xy_) €RY™", x, e(a,b), f denotes the partial Fourier transform of s with respect to
x" defined by

F&x3) = F T/ Gx)NEN = [ e f(xy )dx
with &' =(&,....&y_)eRY™" and x'.&' = Zj:lxj;/ , and we have set g, = ﬁj(f’,O) . To obtain solution formula, we set

O
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Ao —Axpy —Bxy H — —Axpy
v, =ae + Be , O=we

with 4=¢'| and B=+/Au'+| &} , and then from (4.7) we have

pa; (B - A +iEw=0, pay(B®-A4%)-Aw=0, (4.8)
N-1 N-1
Yigay — Aay =0, Y& B, — BBy =0, (4.9)
k=1 k=1
ui(Aa; + BB)) —i& (ay + By)} = &, (4.10)
2u(Aay + BBy)+ 0= gy- (4.11)

The solution formula of Eq. (4.3) was given in Shibata et al.,** but there is an error in the formula in [ref.40, 4.17] such as*
pi(Aa; + B +i& oy + )} = hi(£,0),

which should read
(e, + BB) ~i& (ay + By)} = hy(£,0)

as (4.10) above. The formulas obtained in are correct, but we repeat here how to obtain a; s B and o, because this error
confuses readers.

We first drive 2x2 system of equations with respect to «,, and g, . Multiplying (4.10) with i£,, summing up the resultant
formulas from ;=1 through ~ -1 and writing i(f'-m'=2j:li§jmj for m, e {a;.8,.2,} 9ive

HAIE o'+ uBi&' - B+ A(ay + By) =i&'- g (4.12)
By (4.9),
ig'-a'=Aay, i&'-p'=Bpy, (4.13)
which, combined with (4.12), leads to
24%y +(A* + By = uiE' - g'. (4.14)
By (4.8),
p=tE L) (4.15)
which, combined with (4.11), leads to :
(4> + BDay +24BBy = 1 Ag),. (4.16)

Thus, setting
il [AQ +B* 24

= b ZJ (Lopatinskimatrix),
2AB A" +B

we have
L [ﬁNJ _ (ﬂlif' g
ay) \ u'ag
Since Y
detl = (A% +B*Y —44’B=A* —44’B+24>B> + B* = (B - A)D(4,B)
with
D(4,B)= B’ + AB* +34°B* - 4°,
we have
Lo 1 A4 +B 24
(B=A)D(A,B) —24B A*+B*)

Thus, we have

1

— 2 PAYS-N 3
—,u(B—A)D(A,B)((A +B)ig g =24°gy),

By
(4.17)
In particular, ay = m(ZABif' g~ (4 +B*)4gy)).

Dy =aye N 4 e BV =ay (e N e PN) 4 (ay + By)e BV,
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We have {
- - 2 2 _ cer ot 2 2 _ 3
ay + By (B—A)D(A,B)((A +B"—2A4B)i"-g'+ (A" +B")A-24")gy)
1 2. g0 ' 2 2
= (B-A)i& g +AB -4
iy B g+ A - Agy) o
-V B aVie _
ﬂ(B_A)D(A’B)((B A)ig'-g'+ A(B—A) A+ B)gy)
— 1 _ . /. r
—ﬂD(A,B)((B A)ig'-g'+ A(A+ B)gy).
Setting
-Bxy _ —Axn
M (o) =
we have
. A o Rl s
S pa ™M (VICBIE g (4 Bgy) + #f)( L5y (B i g+ A+ Blgy). (4.19)
By (4.15) and (4.17),
_u(B A uB -4 -1 P
@ 5 ay = ,u(B—A)D(A,B)QABZg g'— (A" +B)Agy))
A
:—f)(l?)(ZBifﬂg’—(Az+BZ)gN)>
and so
A:_(A+B)e_AXN PEl o 2 2
0 —D(A,B) (2Bi&"-g'— (A" + B )gy)). (4.20)
By (4.8),
lgj lgj A+B e ' 2 2
. = = 2 N B A
q; ,u(B2—A2)a) u(B* — A% D(A,B)( Big'-g'— (A" +B")gy)) )
_ lé] et o 2 2
—y(B—A)D(A,B)(ZBV: g (A" +B)gy)
By (4.10) | 1
ﬁjzﬂ_ng+E(l§j(aN+ﬂN)_Aaj)'
By (4.18) and (4.21)
ig;(ay + By) — Aa,
B B AV o'+ A(B - CAQBIE & — (L + B
#(B_A)D(A’B){(B A)i&' - g'+ A(B- A) A+ B)gy — ARBi&"-g'— (4" + B )gy)}
— lé:] 2 _ 2N [y 2
—,u(B—A)D(A,B) {(A4°—4A4B+ B")i&' - g'+24B°gy)},
and therefore
ﬁ.:Lg,+—i§f {(4> —4A4B + B*)i£'- g' +24B’g))}. (4.22)
7 uB®’ " u(B- A)D(A,B)B N
Combining (4.21) and (4.22) gives
e + igje 2Bi&' - g'— (4> + B?
V= LB g, ,u(B—A)D(A,B){ i&-g'—( gy}

i je_B N
4

" (B - A)D(4,B)B

{(A> —44B + B*)i&'- g' +24B%g )}

1
=—g. +1i&' g +1gy,
ﬂBg, &g+ gy

(©)



. . ‘ On the maximal L - L theory arising in the study of a free boundary ‘ ‘ ‘
problem for the Navier-Stokes equations

with
i& je’AxN i je’BxN

I= (4> —44B + BY),
1(B— A)D(A, B) 1u(B—A)D(A,B)B

. —AxN . —Bxy
g e i&.e
e (4> +BH)+ L e 24B
(B — A)D(A, B) (B~ A)D(4,B)
We proceed as follows:
_ Z-gj(efoN _efoN) iegjefoN

+ (A2 —44B +3B%)
(B — A)D(A, B) w(B— A)D(4,B)B

2i&;BM (xy) N i&;(3B—A)e N

1D(4,B) uD(4,B)B
e i&;(e PN —e PNy £+ B i&e” "™ (4> —24B + B*)
H(B—A)D(4,B) H(B—A)D(4,B)
_ i&;(4* +B)M (xy) - i&;e”"N (B - A)
1D(4,B) 1D(4,B)
Therefore, we have

A eiBXN lng (xN) .t = o 2 ié:je_BXN ol et r_ |
v; = B g~ LD(AB) (2Bi§"-g' = (A" +B )gN)+——#D(AyB)B ((BB-A)ig"-g' = B(B—A)gy). (4.23)

To define solution operators for Eq. (4.3), we make preparations.
Lemma 4.4: Let s¢R and 0<e<x /2. Then, there exists a positive constant ¢ depending on ¢, m, and m, such that

c( A" +4)<ReB<|BI<(u ' | A)* + 4, (4.24)

c( A2 +4)° < D(A,B) < 6(( " | A2 + 4)°. (4.25)
forany 1ex, and uel[m,m,].
Proof : The inequality in the left side of (4.24) follows immediately from Lemma 3.2. Notice that

D(A,B)= B’ +34*B+ AB* — 4> = B(B* + 2A4*) + A(A* + "' 2) - £
=B(u'A+44%) + u' A4

If we consider the angle of B(u"'A+44%) and —u "4, then we see easily that D(4, 8) + 0 . Thus, studying the following
three cases: R |A["?<4, RA<A['? and R'4<|A["*< R4 for sufficient large R >0, we can prove the inequality in
the left side of (4.25). The detailed proof was given in Shibata et al.*' The independence of the constant c of 1e>, and
1 €[my,m,] follows from the homogeneity: \/y"(m21)+(mA)2 = m\/u"/1+A2 and D(mA,mB)=m’D(4,B) for any m>0

and the compactness of the interval [7%:7] .
To introduce the key tool of proving the R boundedness in the half space, we make a definition.
Definition 4.5: Let ¥ be adomainin C, let 2=V x(R""'\{0}),and let m:=—C; (1,&) > m(1,&") be C' with respect
to 7,where 1=y +irer,and C* with respectto &' RV \{0}.
1) m(A,&" is called a multiplier of order s with type 1 on =, if the estimates:

|8?m(/1,§') [<Cel A1 +187D™, |a§(ﬂa’m(ﬂ’§’)) [<Cel 21" +1¢7D™ hold for any multi-index « e Nj and with some
constant C,. depending solely on «" and 7.
2) m(A,¢") is called a multiplier of order s with type 2 on =, if the estimates:
|05m(A,EV S Co(| AP +[ED1E T, [05(0,m(A,ENISCu( A" +]ED° €T hold for any multi-index xeN) and
(4,¢") e = with some constant .. depending solely on «" and 7 .

Let a7, ,(v) be the setof all multipliers of order s with type i on = for i=1,2.For me m_,(v) , we set M (m,V) = max<nCy -
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Let FfT' be the inverse partial Fourier transform defined by
_ ’ ' 1 ix'-&' ’ 4
F,gl[f(g,x,v)](x>=WjRN,le WAGRIII
Then, we have the following two lemmas which were proved essentially by Shibata et al.*> Lemma 5.4 and Lemma 5.6].
Lemma 4.6: Let 0<s<7/2, 1<g<w,and 4,>0.Given meM_, (A, ), we define an operator (1) by
(L) = [F o Im(A, ) A 2e PN (£, y )I(x) -
Then, we have
lyqjl2Aa
gt () (APOSLAN A€ g 1) <1y (A)
forany ¢= O,Idand J=0,1,2 Where 7 denotes the imaginary partof 4, and 5,(4,) is a constant depending on M(m,A, ;)
&, Ay, N,and g .

Lemmad4.7:Let 0<s<z/2, 1<g<w,and 4, >0.Given meM_,,(A, ;) , we define operators L,(1) (i=1....,4) by
[L(Dglx) = I:F57l[m(l,f')AefB(XN”N)é’(f',yN)](x')dyzv,
[Ly(D)g](x) = J;Fgl[m(/%f')Ae_A(xN IVIGE, I dyy s
(L)1) = [ F ' Im(AE)AM ey +1y)E(E )y,

[Ly(AgIx) = [ F ' Im(A,EN A2 AM Gy +33)8(E 7)1 dyy.
Then, we have

(@) (WL (AN | A€ Ay s ) < 13(Ag)

L (g RHG T (RN

for v=0,1 and j=o0,1,2. Where 7 denotes the imaginary part of 1, and r,(4,) is a constant depending on M(m, A, 5,)
&, 4, N,and q.

To construct solution operators, we use the following lemma.

Lemma 4.8: Let 0<s<z/2, 1<g<w and 2,>0. Given multipliers, n eM_, (A, ), meM,,(A,,), and
nyeM_ (A, ), we define operators 7,(1) (i=1,2,3) by

T(A)h=F '[N m (. EYh(E,0)](x'),
Ty(A)h=F 2 '[4e™® N ny(1.E (€, 0)](x').L
T(Wh=F 2 '[AM (xy )ny(A,E)A(E, 0)](X).
Let
z,RY)={(G,G,)|G e L,(R)), G,eH,(R})}.

Then, there exist operator families Ti(ﬂ)eHol(AMO,L(Zq(R’f),H;(RQ’))) such that for any A=y+irel,, and
he HyRY), T.(A)h=T,(A)(A"*h,h) and

(rqjl2
Ly gy (@) QTGN A€ A D < 13() (4.26)
for ¢=o0,1, j=0,1,2. Where 5,(4) is a constant depending on M(n;,A, ;) (i=1,2,3), €, 4, N,and q.

Proof : By Volevich’s trick we write

® - 0 — XN+ r 7 ’ r
L(Wh==[Fy g, (AP (2. £V M)y
N
_ _J‘:Fir—l[ﬂl/zefg(ww,v)n] (ﬂ-,eg’)aNﬁ(eg’ayN)](x’)dyN
P 1 q1/2_~B(xNy+yN) /11/2 U272 '
+[FA e (AP RE v dyy
uB

N-L O - )11/2 ig/_ , ,
= L B TAe PN Z Sl (2, EF [0,y NGy
j=1

where we have used the formula:
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7,u_12.+A272. N—lél‘é’f_ji.
=B A4 7

J=

Let
Ti(ANG,Gy) = =[ F A e N Wy (4,EYF [0, G,y T )dvy

o _ Brw+ 11/2 ) )
+IO F§'1M1/ze B(xN+yN) nl(/l,§)F [G, Gy )XYy
uB

By ey A 1L
—Zj Fe e PN ==l (A,EF 10,656y dvy,
and then, T;(A)h =T, (A)(A"*h,h) . Moreover, Lemma 4.6 and Lemma 4.7 yield (4.26) with ; =1, because

11/2 11/2 5
m(4.8NeM 5 (Mg ) ﬁ’ﬁ(ﬁ,f') €M (Mg ) ?—”l(/1 &) EM 5 (Ag )

Analogously, we can prove the existence of T,(1). To construct T,(1), we use the formula:

O M (xy) == — AM (xy),
Oxy

and then, by Volevich’s trick we have
© _ 0 NV ’
L(Wh=-[Fy I[J(AM Coy + 23 (A EVA(E vy DI dyy =1 + 11
with 4
1= [ Fa'[AM (xy +,)my(A,005h(E y)I)dvys

1= [F (AP0 M (x4 3y (A EVRE )N )y

Using the formula:

B2 BZ BZ BZ = Bz
we have
1/2
1=[F1A"2aM (xN+yN>l (AN Iy
+[FAM (xy + mpng(ﬂ,5’)aNﬁ<§',yN)](x')dyN;
1/2

Il = j:F S (ATENIN 4 M (xy + yy )) s (A ENVAPRE, y O dy

—ZI Fll(Ae POV + 4PM (x4 ) 5 L ny(AEVF [0 1y )y
Let

T5(A)(Gy, Gy)
P 1 a1/2 /11/2
=_J'0F§, [AY2AM (xN+yN)ﬂBZ

1y (s EVF [0, Gy vy T )y
~[FAM (g + yN)ﬁng(z,é')F [0 Gy oy () dyy
1/2

+HF 1A 1 2 (xN+yN>>‘ 513 (4,E)F [G Gy dyy

—ZI:FK;'_I[(AJB(XNWN) +AM (xy + yN))%’% (4.&NF [0,G, Gy dyy,
j=1

and then T;(A)h = T5(A)(A"*h,h) . Moreover, Lemma 4.7 yields (4.26) for =3, because
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/‘[11/2 , lf- ,
M) €M 2oy Zozms D) EMap(Bg ) Zrm(hd) €M pn(By ).

This completes the proof of Lemma 4.8.

Continuation of proof of theorem 4.3. Let v, (x) = F{l[ﬁ-(c‘f/ xy)](x"), and then by (4.19) and (4.23)

— -1
we have vw=Fa l——

DA, B)M (XN)(2BZl§zhz(§ 0) = (4 + By (£, 0)I(x")

s B)(( ‘A)Z@ i (1,0)+ (44 By (£1,00)(;

/11/
-1
v =Fg [

AN (£,00](x) + F [ AeTEN R (£,0)](x)

i&y 1 2
—F N AM (xy) =% 4 DA, B)(ZB;lé‘/hz(e‘ ,0)— (A7 + B hy (£,0)](x")

+F e N li" W(GB A)Zlfzhz(é 0) = B(B — A)hy (£, 0)I(x"),

2
for x=1,...,N -1, where we have used the formula LBZZLIP A—3 to treat the first term of v, in (4.23). Since
uB u
Bi§,  A*+B* & Bi, £, A*+B?
uD(A,B)" uD(A4,B)’ A uD(A,B)’ A uD(A, B)
B-A i A+B A & (3B-A)ig & BB-4) _
uD(A,B) A’ uD(A,B)’ uB>’ A uD(A,B)B’ A uD(A4,B)B

71,2(25,/10 )r

5232 (Zg,ﬂ{) )s

1/2

and % eM,,(Z, ) by Lemma 4.8 we have Theorem 4.3. We next consider the equations:
U

Aw—Div(uD(w)—ql)=0, divw =0 in RY,
Ah+ A, -V'h—w-n, =d on R}, (4.27)
(uD(w) — gl)ny — S(A'h)n, =0 on RY.

We shall prove the following theorem.

Theorem 4.9: Let 1<g<w and £<(0,~/2). Then, there exist a 4, >0 and solution operators w (1) and H_(A) with

W (2) eHol(A, L (H; (RY),H;RVY)), H,(A)eHol(A, ,.L (H} (RY),H (RY)),

such that for any A=y+itel,
some qu (Q), and

4 and deH;(RY), w=w (1)d and h=H_(2)d are unique solutions of Eq. (4.27) with

(@) AW () [ A e A, 4 D <1(A).

Lty sty ({00 (HG () |2 € Mgy D < 13(0)
for r=0,1, k=0,1,2,and m=0.1, where r,(4,) is a constant depending on m,, m,, m,, €, 4, N,and q.

R
L g Y, ®Y¥HN)

Proof: We start with solution formulas. Applying the partial Fourier transform to Eq. (4.27), we have the following generalized
resolvent problem:

AW, +ul&f W _/ua?ij +i5g=0 (xy>0),
Moy + | &' oy — g0y +0yg =0 (xy >0),

N-1
DUEW 0,y =0 (xy > 0),
j=1
L@y, (0) +i& iy (0) =0, 2ud\ oy —g=0A’h for x=0,

Ah+ Zzgl G/HWN =d forxy=0. (4.28)

O
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Where, we have set 4, =(4;,...,4,5-1) . Using the solution formulas given in (4.19) and (4.23) with g,=0 (j=1,...N -1
and g, =c4% , we have

i& M . iE.e BN -
W, = MUAZ(AZ + 32)}, _LJAZ(B — A)h,
uD(4,B) uD(A4,B)
. —Bxp n
oy =AM N o B 4+ B, (4.29)
uD(4,B) uD(4,B)
(A+ B)A* (A% + BY)e ™™V .
D(4,B)

Inserting the formula of w,, liy=o into the last equation in (4.28), we have

3
(l+i§"Ag)ﬁ+Mfz:ﬁ

s

uD(A4,B)
where we have set ig'- 4, =3 ""i¢, 4, , which implies that
h= Ma} (4.30)
EO'
with E_ = u(A+i&' - A,)D(A,B) + o4’ (4+ B) . Thus, we have the following solution formulas:
. . cA*(A*+BY) 5 . g, oA(B-A)
W, =i&M (xN)—(—)d—tﬁje B’Né—)d,
. cA*(A*+B*) 5 _p oA (A+B) 5
Wy =—AM (xN)—E-d+e % E—d, (4.31)

. _ HA+B)A (A + B )
E

(o3

Concerning the estimation for E_, we have the following lemma.
Lemma 4.10:

(1) Let 0<e<xz/2 andlet E, be the function defined in (4.30) with 4, =0. Then, there exists a 4, >0 and ¢>0 such
that the estimate:

|Eg 2 e A1+ A" +4)° (4.32)
holds for (2,&") e, , x(RY\{0}).
(2) Let se(0,1) andlet E_ be the function defined in (4.30). Then, there exists a 4 >0 and ¢>0 such that
|E, 2 c(Al+A)(| 212 +4)° (4.33)
holds for (2,&")eC, ; x(R*™'\{0}).
Where, the constant ¢ in 1 and 2 depends on 4, m,, m,, and m,.

Proof : We first study the case where |12 R4 for large R >0. Since |Bl<A+u |4 and since A, , <X, by
Lemma 4.4 we have

|E, [2 | Al D(A.B) | | A, || A]| D(A,B) | ~o 4> (A+p7" [ 2]")
2| A (A7 44 = um,CRI AL A2 +4) = Po | 2172 (A2 +4)°
2 (cu) | AN A +4) + (ep ) 2) = um,CRT =/ (u| AN A1 (| A2 +4)°.
Thus, choosing R, >0 and 4 >0 so large that (cu/4)— um,CR™' >0 and (cu/4)—o/(u4)"* 20, we have
|E, 2 (cu! | AL A" +4P = (cpu ! (A |+R A A[72 +4)° (4.34)

provided that |1 > R4 and AeA_; . When o =0, we may assume that m, =0 above.

o, 4
We now consider the case where |1 |< R 4. We first consider the case of o =0. We assume that 1€Z, ; . In this case,
we have 4>R'|A["* 4%, and so, setting R, =R '4> and choosing R, large enough, we have B= A(1+O0(R;"). In

Ey =414 (1+ O(R))) + 20 4* (1 + O(R;M)).

particular, D(4,B)=44°(1+O(R;")). Thus, we have
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Using Lemma 3.2, we have
| Ey 12| 4pA4° + 20 A% | —4u | A| A2O(R;") - 20 4°O(R,")
> (sing)(du| A A +204") - ORHNBu| 1| 4° +204%).
Thus, choosing R, >0 so large that (sing/2)—O(R;") >0, we have
|Ey > (sing /2)@u|A| A + 204" ) 2 c(| A+ DA 2 (c/ 2)(| A|+A)A+ R, | L"),
This completes the proof of 1.

We next consider the case of & (0,1) . We assumethat | A< R4 and 1€ C, , .Inthis case, we have 4> R'| A]"* 4%, and
so, setting R, = R4 and choosing R, large enough, we have B = A(1+O(R;"). In particular, D(4,B)=44*(1+O0(R;"))
. Thus, we have

E, =4uReA+i(ImA+ A, -ENA(1+O(R,)) + 204 (1+ O(R; 1)),
and so, taking the real part gives
ReE, = 4u(Re) A (1+ OR; D) + OR,N(AmA + A, - ENA? + 204 (1+ O(R;M)).
Since Rei>4 >0 and | 1< R 4, we have
ReE, >204" —(4u(m, + R) +20)0(R; ") 4%,
and so, choosing R, >0 so large that o —(4u(m, + R)+20)O(R,") >0, we have
|E, [2ReE, >cd*>(a/2*) A+ R | AN(A+R, | A7),
This completes the proof of Lemma 4.10.
Continuation of proof of theorem 4.9: Let w; =F ./'[W,], ¢=F'[¢] and n = ¢(xN)F571[e‘AxNﬁ] , where ¢ e C7(R) equals
to 1 for x, e(-1,1) and O for x, ¢[-2,2]. Notice that 7|, =4
Let w;(x)= Fng[v}j(f’,xN)](x’) - In view of (4.31) and Volevich’s trick, we define w, (1) by

2
) WF [Ad)E yy)

o

W, (2)d = j:F ANV L 2M (xy + yy ) =L

+ e BGN +yN)l§710-B(§__ A_) F

y (AN, y)NX)dyy

o

)E 10,04d1(€yy)

w0 _ o(A* + B?
HIFAM (o4 T

o

_Blxw+ cA(B—- A . , 3
T Ae PN W%F [0,05d )"y ))&y

o

where we have used F '[Ad](&,yy) = —Azc?(g’,yN) - We have w,(1)d =w,. By Lemma 4.10, we see that

A+ B> AP+ B*E, AB-A) BB-A)

E E A E E A

o o o

), and so by Lemmg 4.7, we have
(@) AW () Ae A, 4, D) <n(A)

for ¢r=0,1 and x =0,1,2, where 7,(4,) is a constant depending on m,, m,, m, and 4, .

belong to M_,,(A, 5

L3 (RN ).HZTF (RN

Analogously, W, (1) can be constructed. Thus, our final task is to construct H_(4) . In view of (4.30), we define H_(1)

acting on d e H;(R") by D(A B) -
u

H o (A)d = ¢(xy )F ;' [e N ==2=2d(&",0)](x').

Since ¢(xy) equals one for x, e(-1,1), we have H,(1)d |,, o= h Recalling the definition of 4 given in (4.30) and using
Volevich’s trick, we have H_(1)d = ¢(x)){Q,(A)d +H 2(A)d} with

0, () = [ e v o EEEED o, a2,y )0y

©)
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0 _ —A(x D A,B e ’ ’
R == [ F e v BB o, (g, )y My
We use the following lemma. ’
Lemma 4.11: Let A be adomainin ¢ andlet 1<4<w.Let ¢ and i be two c7((-2,2)) functions. Given m e M,,(A),
we define operators L (1) and L,(1) actingon geL (RY) by
[Ls(A))(x) = @iy [ F ' [e N N m(2,E)8(E, v W (v ey

() = @) [ F ' TAe OV N m(A, NG (& vy w () vy

Then,
4
RL (Lq(RiV)({(Taf) LD [AeA})<r (4.35)
for r=o0.1 and k=67, where 7, is a constant depending on A7(m,A) . Here, a(m.A) is the number defined in definition
4.5,

Proof : Using Lemma 5.4 in Shibata et al.,*> we can show (4.35) immediately for £ =7, and so we show (4.35) only in the
case that £ =6 below. In view of Definition 1.2, for any ne N , we take {ﬂj};;l cA, {gj};’-=l c Lq(]Rﬁ’) ;and r;(w)(j =1,...,n)
are Rademacher functions. For the notational simplicity, we set

q
du)"i.

L, ®RY)

Il Ls(Dg M=

=}

N
Lg(©.1).Lg RY)

er (u)Lg (ﬂ’j)gj
=1

S @)Ly(A)g,
=

By the Fubini-Tonelli theorem, we have
1pow 7
Il Zeg = [ | [ 2 @)L, I dydyd
=

q
- j:’(j; du)dxy,.

1, &N

S @)Ly(A)g,
=1

Since
|05 (e "N Ny (4,E) < Cpe | €17

forany xy >0, yy 20, (1,&)e Ax@®RY1\{0}), and a’e RV, by Theorem 3.1 we have

q
1 < = X, " A U ’
jo‘ D WF e NN m(A,, 68 (&, )1 du
- LNt
4.36
” , (4.36)
< Cy M(m,A) jo‘ > g, Gy du.
Jj=1 Lq(]RN_l)

Forany x, >0, by Minkowski’s integral inequality, Lemma 3.3, and Hélder’s inequality, we have

1/q

du
N-1
L, @Y

q

h

er (u)Lg (Z’j )gj
=

1/q
X q
=g | [} du)

N-1
1, @Y

N {i;,-(@e’“XN*W>m(ﬂ,-,§'>g‘.,-(5',yN)}(y')y/<yN)dyN

dyy)? du)'
L, RN )

<ot [,[

Ff;r‘[irj(u)e‘A<"N+yN>m(/1,,é')gj(é’,yN)]<y')w(yN>
j=1

q

<o) [ )’ |y () ldvy

F 1D e NN om( 2,608 (&, i)l (V)
=

L, &N
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q

du)" |y (yy)ldvy

o el
< Cy MmN o) (],
L, ®N1

S g,6ry)
=

q

< Cy MmN [0 (][] dudy, )" ([ 1w () I dyy)'

)

zrj(u)gj(',yN)
j=1 Lq(]RN
q

) ([ "1y ) |7 dyy)'

Ly RY)

=€, M) | i) | ([ w0 o)
=1

Putting these inequalities together and using Holder’s inequality gives

q
du

Ly (RY)

" q
PIOES
j=1

I ilrj(u)Lé(z,-)g,.

du([ Iy )7 )",

0 1
<(C, ,M(m,A)) jo | () |7 dxy jo
L, (RY)

and so, we have

n
Z’jgj

Jj=1

zer(’ (4)g;
-1

J

< Cn,qM(m’A) ||¢||Lq (R) "l//"Lqr(R)

L, (0.0, (RY) L, (0.0).L; (RY)

This shows Lemma 4.11.
Continuation of proof of theorem 4.9: For (j,a'.k)e Nyx N} ' x N, with j+|a'|+k<3 and j=0,1, we write
AoLo\H () = f C, (@ "pley DA 0%0NQ, (A + A% OYH F (A)d],
and then T
218%an0_ (A)d
A (i) (~A4)" D(4,B)
1+ AHE,

= [[F'[4eenom P )F (1= A)IE, y ) )dyy;

: w Y A
Ry = [T e oo BB o (p3,0d(& DOy

o

A% anH 2(A)d

= J.wFfr_l[eA("N +YN) fu’q“j(ié:/)a’ (=4)"D(4,B)
0

TE, OGO )y

N-1 Jrrena’ n ;

_ B i aey ) MA (S (=A)" D(4, B) ig; . ' ,

;JO Fo[de™ NN (s )E, Y, Oy (@(yy)F [0,d(, y)IEN X dyy
for |a'|+n>1. Where, we have used the formula:

1+ 4% | R R -

1= = Lig,

2

1+ 1+ 4 =
in the third equality. By Lemma 4.4 and Lemma 4.10, we see that multipliers:

A GEN A"D(A,B) AD(A,B) A/ (&N A"D(A,B) A’ (iE')* A"D(4,B) &;

(+4HE, ~ E, ~  (+4HE, = (+4HE, 4

), because j+|o'|+n<3and j=0,1. Thus, using Lemma 4.7, we see thatforany ne N, {1,}]_ cA, .

belong to A,(A, ,
and {d,}"_, « H2(RY), the inequality:

<C
N
L, (0.2 (RY))

@ "B, 0% 0NH L(4,)d,
/=1

S 0d,
=1

Ly (), HZ (RY )
holds for i=1,2, which leads to
“Zri,(~)(ﬂg>-’6f:f6$‘vHa</u)df

=1

<C
Ly (0.2 (RY )

ir[(u)dz

=1

L, (0,1 ®Y )

©)
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Here, C is a constant dependingon N, g, m,, m , and m,. This shows that
k
. (H%(R{V),Hg’k(Rﬁ’))({ﬁ' H (D 1e Ay DS,
for £k=0,1.Here, 5,(4,) is aconstantdependingon N, g, m,, m,and m,, butindependent of x,5 e[m,,m] and | 4, |<m,
for o €[0,1). Analogously, we have

k
RL (H[%(Rj{v)ﬂgfk(&{v))({ﬁr(ﬂ H ()| Ae Ao‘,ll D <nr(4)
for k=0,1. This completes the proof of Theorem 4.9.
Proof of theorem 4.1: Let (1,d,h) e, (RY) . Let ge H,(RY) be a solution of the variational equation:
M20) v +(VEVP) y =(—f V), for anype Hy (RY), (4.37)
+ + +

subjectto g=p on 1. Let u, ¢ and i be solutions of the equations:

Au—Div(uD(u)—qgl)= f, divu =g=divg in ]Rf,
Ah+ A, -Vih—u-n, =d on RY, (4.38)
(uDW) — gl — S(A'h)Dn, =h on RY.

Where, g is a solution of Eq. (4.37) with p=h-n, and g=A""(f +Vg). Then, according to what pointed out in Subsec.
21, u and h are solutions of Eq. (4.3). Thus, we shall look for » , ¢ and » below.

We first consider the equation:
divv=g inRY. (4.39)
We have the following lemma.

Lemma 4.12: Let 1<g<w, 0<e<z/2,and 4,>0. Let

Y RO =Ap)| f e L, R, pe H (R},
Y (RY)={(F.G,G) | F € LR)Y,G e L,(RY),G, € Hy(RY)}.
Let g be a solution of the variational problem (4.37). Then, there exists an operator family
By(A) eHol(2, ,,L (Y',(RY), H;(RY)")) such that for any Aex and (r,p)e¥” (RY), problem (4.39) admits a solution
v=By(A)(f,A"p,p) , and
Loajl2
vty s ey, () By AN | A €24 10} <13 ()
for ¢=0,1 and j=0,1,2, where 5,(4,) is a constant dependingon ¢, 4,, ¥, and q.

Proof: This lemma was proved in Shibata® [Lemma 9.3.10], but for the sake of completeness of the paper as much as
possible, we give a proof. Let g, be a solution of the equation:

(A-Ng =divf inRY, gl 0,

xN:0:
and let g, be a solution of the equation:
(A_A)gz =0 in RT’ &> |xN:0: pP-

And then, g =g, +g, is a solution of Eq. (4.37). To construct g, and g,, we introduce the even extension, <, and odd
extension, s, of a function, f, defined on RY, which are defined by

S(X,xy) xy >0, S xy) xy >0,

f(xlafo) Xn < 07 f(x',fo) Xy < O,

S = { 1) = { (4.40)

where x'=(x,....,xy_)eR"" and x=(x,x,)eR". Let f=(f,...,fy)" . Notice that (divf)":ziv:’llajf; +o,f5. We
define g, by letting

N-1
DUEF LS +igyF L1
k=1

A+ &

1 F [(divE)°
g =F [E1+W|§)|2](§)

1=F. 1
And also, the g, is defined by

&0 =, [0 L0l = 21

XN
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where we have set B, =+/A+|&'[> and h(x) = —F§T'[Bg'e’B°XNﬁ(§’ 0)](x") . Let v, be an N vector of functions defined by

S(Q&F LA I +EnF /NS
léF &1 (6) [ kz:l ‘ k N N ]
Hi e A+l P ef
We see that divv,=g, in RY. Moreover, by Lemma 3.2 and Lemma 3.3, there exists an operator family
By (A) e Hol(=,,L (L,(RY),HZ(RY)")) such that v, =Bj(4)/ and

s ety (0 G BIAN A€, ) <1 y)

Y = g[

L (L4
for ¢=0,1, j=0,1,2,and 4,>0, where 7(4,) is a constant dependingon ¢, 4,, N and g .

Let
vy, = Ff_l[w] ﬁ%],

and let v, = (vy,,...,v,5)", @and then we have divv, =g, =8,k in RY . Since

&&,F [831(5)

Vv, =F§'I[T](j=1,...,1v);
Vo, = FEREF [0:e) WOy 1y o1y,
5
0y = F, 2 [Sk'gz) 1O 1. N1,
6?vv2N=Fgl[%F [oyh=F. [éN| F [2h¢ = AR )&,
we have
Vvl ey < Sl s (272902l oy <372,
[V20al, v, = €4V, e, #1200, )

Thus, by Lemma 4.6 and Lemma 4.7, we see that there eX|sts an operator family B (1) with
B, (1) e Hol(2,,B (Z ,(RY), H] (RY)"))

such that v, = B (1)(A"*p,p) and

v, (@) (A7BF ()| A €2, 0 }) <1 (R)

L@ &’ uE T RN
for ¢=0,1, j=0,1,2,and 4,>0, where r,(4,) is a constant dependingon &, 4,, N, and ¢, and Zq(R]f) is the same
space as in Lemma 4.8. Since v =y, +v, is a solution of Eq. (4.39), setting B,(1)(F,,G,,G,) = By (A F, + BZ(A)G,,G,) , we
see that B, (1) is the required operator, which completes the proof of Lemma 4.12. Let u, = By(A)(f,A"*n, - h,n, - k) , and
let u =u, +w, . We then look for w,, ¢, and h satisfying the equations:

Awy —Div(uD(w,) —gl) =f —f,, divw, =0 in RY,
Ah+ A, -V'h-U, -n,=d+d, on RY, (4.41)
(uD(wy) — gDny — S(A'h)n, = h-h, on Ry,

where we have set

Jo = Aug —Div(uD(uy)), dy=uy-ny, hy=uD(uy).

We consider the equations:
AU, - Div(uD(U,)) - PI)=F, divU, =0 in RY,

(4.42)
Oy(U;-ny)=0, p=0 on RON.

For F=(R,...Fy) e L, (R, let F= (F¢,...,Ft_, Fo)T . Let B,(1) and P,(1) be operators actingon F e L,(RY)N defined

(©)
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B, (A)F = F—I[F [F1(§)-¢&E- F[F](é)lél’z]’ P(A)F = F—l[w
A+ulEl [£P

As was seen in Shibata et al.,*° [40, p.587] or Shibata et al.*' [41, Proof of Theorem 4.3], U, = B,(1)F and B, =P,(A)F satisfy
Eq. (4.42). Moreover, employing the same argument as in Sect. ??, by Lemma 3.2 and Lemma 3.3, we see that

1

B,(2) e Hol(Z, 4 .L (L, (RN, HZ(RY)V)), P,(4)eHol(Z L (L, (RYYY,H ) (RY))

forany £e(0,7/2) and 4,>0, and moreover
¥ sy, (@) B (AN A <X, sy D <y
for £=0,1 and j=0,1,2, where 5 is a constant depending on &, 4,, m,, and m, . In particular, we set
u =B (D=1 a=PA(f -1 (4.43)
We now let u=u,+u, +U, and g =g, + P, , and then

£,40°

LLg®Y)

AU, - Div(uD(U,) - BI) =0, divU, =0 in RY,
Ah+ A, -V'h-U,-ny=d+d, on RY, (4.44)
(uD(U,) — P,D)n, — S(A'hyny = h—h, on RY,

where we have set
dy =ny-(ug+u,), hy=puD(u,+u).
Thus, for He #(RY)" we consider the equations:
AU, —Div(uD(U,) - B)=0, divU,=0 in RY, (4.45)
(uD(Uy) ~ Py =H on Ry,

and then by Theorem 4.3, we see that U, =V (1)(A"*H,H) is a unique solutions of Eq. (4.45) with some P, e A)(RY). In
particular, we set u, =V (A)A"2(h—h,),(h—h,)) -

We finally let u =u, +u, +u, +u; and g=g, +4g, +4,, and then u,, g, and # are solutions of the equations:

Ay — Div(uD(uy) — g31) = 0, divuy; =0 in RY,
Ah+ A, -V'h—u;-n,=d +d, on Ry, (4.46)
(uD(u3) — g3 Dny — S(A'h)ny = 0 on RY,

where d, =n,-(u,+u, +u,). By Theorem 4.9, setting W (1) = W,(1)....,W,(A))" , we see that u, =W (1)(d +d,) and
h=H,(A)(d +d;) are unique solutions of Eq. (4.46) with some g, < A7} (R") . Since the composition of two R -bounded
operators is also R bounded as follows from Proposition 3.4, we see easily that given ¢ €(0,7/2), there exist 2, >0 and
operator families A,(1) and H,(4) satisfying (4.4) such that u = A,(A)(f.d,A"*h,h) and h=H,(A)(f,d,A"*hh) are unique
solutions of Eq. (4.3), and moreover the estimate (4.5) holds. This completes the proof of Theorem 4.1.

Problem in a bent half space

Let @:RY - RV : x— y=®(x) be a bijection of C' class and let &' be its inverse map. We assume that vo and vao™!
have the forms: VO =A +B(x) and V&' =A_ + B (y), where A and A_, are NxN orthogonal matrices with constant
coefficients and B(x) and B_,(y) are matrices of functions in ¢*(R") such that

H(B,Bfl)le(cN) <M, HV(Bstl)HLw(RN <Cyg, HV (B,B_ 1)H L&) <M,. (5.1)
Here, C, is a constant depending on constants K, a, g appearing in Definition 1.1. We choose A, >0 small enough
and M, large enough eventually, and so we may assume that 0 <M, <1<C, <M,. Let Q, =®®RY) and I, = d(R})
. Let n, be the unit outer normal to I, . Setting o' =(®_, ,,...,®_, )", we see that I, is represented by @_, () =0,

which yields that

(VO 3o @) (ay +byi (X),..oapy + by ()" (5.2)

)T Ve, )0 y
L (3 (ay; +by (1))
j=1
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is defined on RY and », denotes

+

where ¢, and p,(x) denote the (;, )" elementof A, and (B, - ®)(x) . Obviously, »
the unit outer normal to T, for y=®(x',0)el, . By (5.1), writing

n, =—(aNl,...,aNN)T+b+(x) (5.3)
we see that 5, is an ~ -vector defined on R" , which satisfies the estimates:
., vy <CuMy, VB, ) < CnCr, v, < Coz (5.4)

We next give the Laplace-Beltrami operator on T, . Let

g(x)= 7()() 7( )= Z(%k + by (D)@ + by (%)) = 5 + &5 (x)

with gij=Zle(aikbjk(xhajkbik(x)+bl.k(x)bjk(x)). Since T, is given by y, =®(x,0), letting G(x) be an NxN matrix
whose (i, /)" elementare g (x), we see that G(x',0) is the 1% fundamental matrix of T, . Let g, :=+/detG and let g7(x)
denote the (i, j)* component of the inverse matrix, G, of G . By (5.1), we can write

g =1+g,, glx)=6;+8"(»

with
e, v, SCvMy V@ 8D, v, <CrCrs | D], v, <G (5.5)
The Laplace-Beltrami operator Ar, is given by
N-1
Ar, )= 2.(v.0) ox {g+(x 0)g] (x, 0)7f(<D(x 0))} = Af(@(x",0)+D, f (5.6)
i,j= =18+
for y=@(x',0)eT, . Where,
O 2802 f -+ Zg LD for =)
with 'y %
! N-1
g'(x)= e )Z‘(&( x)g" (x)).
By (55) 8+ i 1
||D+f||Hq(R+) C M HV f"[ (]RN +CM2 ”f”H‘%(]RiV)' (57)

We now formulate problem treated in this section. Let y, be any point of T, and let 4, be a positive number such that

| () = (%) L 8(3) = S(yo) [ mM,, for any y € Q, "By (¥,);

(5.8)
[ A, (¥) = A5 (o) IS myM,  foranyy e T, N By (v,)-
In addition, x, §,and 4, satisfy the following conditions:
my < u(1), 0 <my, |V LI V()< m,  for any yeQ., (5.9)

|4, (»)|£m, for any yel',, ||Aa.||W2—I/q(Q+) <myo™" for any o €(0,1).

In view of (1.2), (1.3) and (5.9), to have (5.8) for given A7, € (0,1) it suffices to choose ¢, >0 in such a way that 4, <M, and

d¢ <M,.We assume that N <r <o and 4, =0 according to (1.3). Let ¢(y) be a function in C;’(R") which equals 1 for

y EBdO/Z(yO) and 0 in the outside of B, (y,) . We assume that [Vg],, LNy M, Let

My )=o)+ L= o(Nu(yy), 6,,(») = @(1)5(¥) + (1= (1)) ().
Ay 0 ) =004, (¥) + (1= 0(¥) 4, (vp)-

In the following, C denotes generic constants depending on m,m,m,,m;,N,s , and g; C;;, denotes generic constants
depending on M,,my,m,,m,,m;,N,& and q.

Given ve #2(Q,)Y and nhe H(Q,), let K,(v,h) is a unique solution of the weak Dirichlet problem:
(VK,(v, 1)),V @), = (Div(pr,, D(V)) = Vdivv,V @),  for anyp e IZIL,’O(QJr), (5.10)

subject to K, (v,h) =< u, D(v)n,,n, >0, Ar_h—divv on T, . We then consider the following equations:
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Av = Div(p,, D(v) = K, (v, h)I) =g inQ,,
Ah+ A, Ve h=ven, =g, onl,, (5.11)
(4,,DOV) =K, (v, h)Dn, =8, (Ar h)n, =g, onl,.

The following theorem is a main result in this section.

Theorem 5.1: Let 1<g<w and 0<s<z/2.Let y, be the number defined in Theorem 1.7. Then, there exist M, (0,1)
, 4, 21 and operator families A, (1) and H,(1) with

Ay(2) € Hol(A L (Y, (Q).HI(©,)").H,,(2) € Hol(A L (Y, (@), Hy(©,))

O'.j()}’o' O'j()}’o'

such thatforany A=y +ire A, oo and (g,g,.g,) € Y,(Q,),
u :Ab(/l)(g:gds/ll/ngsgb): h :Hb(/l)(g:gdsll/ngsgb)
are unique solutions of Eq. (5.11), and

(@) (APA () AeA ) <7

L (Y@ H2 7 (@) ovdor)

(5.12)
Lok
s oty ) (@) GH ) LA, o b <,

for £=0,1, j=0,1,2,and k=0,1. Where, 7, is a constant depeding on m,,m,,m,,m;,N,¢ and q but independent of 1,
and M, , and moreover, , is a constant depending on M, .

Below, we shall prove Theorem 5.1. By the change of variables y = ®(x) , we transform Eq. (5.11) to a problem in the half-
space. We let

Yo =D@(xy),  Ai(x) = PN (P(x)), S(x) = HPE))S(@(x)), A, (x) = P(P(x)) A, (P(x)).
Notice that
iy (D(X)) = p2(3) + [1(x) = [1(x0) S, (D(x)) = 5(3) + 5(x) = 5(x,),
A (D(x',0) = A4, (y) + A (x) = A, (%))
We may assume that m,, m,, m, <M, . Recalling that |[Vg],. &V, <M, by (5.8) and (5.9) we have

| () = fi(xo) [€ M, | 8(x) =8 (xg) [SmMy, | A, (x) = A, (xy) [€ myM,,

[@.8), v, < VS, o, < Cors: (5.13)
"‘Z‘THLQO(R{)V) < m, ||V;1<’||W,}’”‘I(Ré\’) <Ci, o
for o €(0,1).
Since x=®'(y), we have
0 U 0
o ;(akj +b,q.(x))a (5.14)
=

where (V™) (®(x)) = (a; + b, (x)) - Let

g:=detVD, g=g-1.

By (5.1),
HgHLw(RN) <CyM,, HVgHLw(RN) < CyCg, HvngLw(RN) <Cy,- (5.15)
By the change of variables: y = ®(x) , the weak Dirichlet problem:
Vi,V p)a, = (k,V)q, for anyp e Hy (),
subjectto u =k on T, , is transformed to the following variational problem:
(Vv Vy) y +(B V,Vy) y =(BVy) y foranyy e Hyo(RY), (5.16)

subject to v=#, where h=g(RA_,+B ,o®)kod and h=kod. Moreover, B is an N x N matrix whose (¢,m)"

Im 2

N
Bl(r)n = g6, + gz(aéjbmj (x) + a,;b,;(x) + b,b,,; (x)).

j=1

component, B/ , is given by



® ‘ ‘ On the maximal L - L _theory arising in the study of a free boundary
problem for the Navier-Stokes equations

By (5.1), we have

Bl e, <M VBl o, <CxCi [V°B ], v, < Cors
|| ‘m Lw(RN CN 1> Im LW(RN CNCK? Im Lw(RN) CM2

Lemma 5.2: Let 1< ¢ <o . Then, there exist an M, € (0,1) and an operator K, with
K el (L, RN, H)(RY)+ A} ((RY))

(5.17)

such thatforany rerz (RY)Vand fen(R)), v=K(f,f) is aunique solution of the variational problem:

(V) + BV VYY) = (V) foranyy e H o (RY),
subjectto v=f on RY, which possesses the eshmate.

HVVHLq(]Ri\’) s CMz (HfHLqURiV) + HfHH}](RQ’))'
Proof: We know the unique existence theorem of the variational problem:

(Vv.Vy) y =(f.Vy) y foranyy ey (RY)
RY RY g

(5.18)

(5.19)

subject to v=f on RY. Thus, choosing M, >0 small enough in (5.17) and using the Banach fixed point theorem, we
can easily prove the lemma. Using the change of the unknown functions: »=A_vo® as well as the change of variable:

»=®(x) , we will derive the problem in RY from (5.11). Noting that A = A", by (5.14) we have
N

D;(v)= Z aa; Dy, (u) + b;.l :Vu
k=1

with b : Vu—zw @ybiDy, (u) . Setting b, (x) = (b,....b, )" in (5.3), by (5.3) we have
< DW)n,,n, >=< D(u)ny,n, >+B"':Vu

where we have set

N N
B':Vu=-2%a;b,Dyw)+ Y, aya,b. b D)
i,j=1 i),k 0=1

N
+> (b;;.’ :Vu)(ay; +b,)ay +b, ).

i,j=1

By (5.1), we have
y (5.1) "B 1 :Vu"Lq(R% <CyM, "V”"Lq(Rﬁ')’

1 2
o <
"B : V”"Hé(neiv , <CviMy "V “"Lq(RiV )G "u"Hé(M)}‘

And also,

divv=divu + B?:Vu with B?:Vu= z (Zbk/ 81,1

a[,a.
rk=1 j=1 X

By (5.1), we have
y (5.1) "BZ:Vu"Lq(R% SCNMlllvulqu(RiV)’

"Bz:Vu

<C M"Vzu" + Cy ||u .
"Hn'z(RiV) VIV ) el e}

By (5.20), we have

A_Div(g, D(V)) = Div(u(yy)D(u) +R ' :u
with R':u=R":u|,....R :1u|y)", and

M=

N
Rl = 3 (i)~ APy} + Y gy ——(aob Vo
k

1 0x; ij.k=1

ul o . ul o .
+ D agby—— (@D W)+ Y. ayby ——(ib] : Vu)
ok, t,m=1 Oxy, i j. k=1 Oxy,

B
I

By (5.1) and (5.13),
IR

< CymM, [V +Cy, | :
LYy~ N L ®Y) " M2 " "H;(R{Y)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

O
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And also, by (5.20)

(A, +B_, o ® Div(u,, D)) = Div(1(y,)D(u)) +R * :u

with R%:u=R?*:ul,...R*:uly) and
R2:u|=R":u|, + Z (@ +bkj [y(x){ Z a,a,; Dy, )+ bf - Vu}].
By (5.1) A o
Rl =Coma V7, Gl 27
And also, we have
(A +B_ o® ) Vdivv)o®d=Vdivu+R?>:u
with R*:u=R?*:u|,....R u|N) and
R*:u|, —7(3 2 Vu)+Z{Z(awbk, +b(ay, +b, ))} (dlvu +B?:Vu).
k=1 i=1
By (5.1)
IR el oy, = Comn [, il 529
Let
@)= g(A_ +B_ o ®)(Div(u, D(v)) - Vdivv) o d,
and then
S W) =Div(u(yy)DW)) - Vdivu +R * :u
with R*:u=R*:u},,...R*:uly) and
R*:ul,= g(Div(u(y,)Dw)) - Vdivu)+ gR* :u— gR* :u.
By (5.1), (5.13), (5.15), (5.26), (5.27), and (5.28),
Rl ar, < Cotm M7, + Cor by a, (529

In view of (5.6), (5.21) and (5.23), setting
p=ho0,

S, p) =< (fa(x) = (X)) D@)ng,ng > +itB ' : Vi = (5(x) = 5(xg)A'p = 5(x)D, p— B * : Vu,

we have
<l DN n, > =6, Ap h—divy =< u(y,)D(w)ng,ny > =6(ye)A'p — divu + f(u, p).

Thus, K,(u,p)=K,(v,h)o® satisfies the variational equation:

(VK,(u, p),V :,z/)]R]+v +(B°VK,(u,p),V v, y = (Div(u(y,)D(W)) - Vdivu +R * :u,V v, N
forany y e H, ,(RY), subject to K,(u, p) =< u(yo) D()ng,ny > ~5(y)A'p —divu + f(u,p) ON Ry .
Let Ky(u,p) e H)(RY)+ H) ,(RY) be a unique solution of the weak Dirichlet problem:

(VR (@), V) = (Div(p(30)D(W) = Vdivu, V) - for anyy € iy (RY),

subject to K, (u, p) =< 1(y,)D(W)ny,ny > —5(y,)A'p—divu on RY . Setting K, (u, p) = K,(u, p) + K,(u, p) , we then see that
K,(u,p) satisfies the variational equation:

(VK,(u, p),V W)M +(B VK, (u,p),V V/)M =(R*:u-BVKy(u,p),V V/)M
forany pe I:I;,’O(Rf), subject to K, (u, p) = f(u,p) on RY . In view of Lemma 5.2, we have
Ky (u,p) =K (R* :u=R VK, p), f (u, p)).
By Lemma 5.2, (5.17), (5.22), (5.24), (5.7), and (5.29), we have
VK, (”’p)"Lq(RQ’)

2 3 (5.30)
<Cy(1+mMy (v ”"Lq(Ri" ) +[v p"Lq(RN )+ Coy (g1 ey + 1]z v

@
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Since
0
A_VK,(v.h)|= z%(“kz +bkz) K (u,0)

ik=1

= Ry )+ 3 Yb) Kol )+ Y0+ D)K.

k=1 i=1

by (5.25) we see that the first equatlon of Eq.(5.11) is transformed to
Au=Div(u(yy)D(u) - Ko(u,p))) +R*(u,p)=h in RY,

where h=A_go®, R (u,p)=R’>w,p)l,....R >, p)|y), and

N N
0
R S(uap) |5: -R : ‘u |s +Z(Za5ibkl K (u p) + 2(5 + Zaslbkz K (u ,D)
k=1 i=1

By (5.3), we have
ven, ==ANu-(ayy,...,any) +Au-b, =u-ny+u-(A_b,),
and so the second equation of Eq.(5.11) is transformed to
2p+ Ay (1) -V'p—u-ny + R} (u, p) = h
with , =g, o® and
RS (u,p)=—u-(A_b,) for a=0,
R (u, p) = (A, (x)— A (x))V'p—u-(A_b,) forc e(0,1).

By (5.3) and (5 20), we have A_,u, D()n, = u(y,)D)n, +R,’ () , Where R/(u) is an N - vector of functions whose s"
component, R, (u)|, , is defined by

Ry’ () |;= ~(f(x) = fi(x0)) Dy (10)

N
+(/1(y0) + ﬁ(x) B [l(xo)) Z (ayb+/ Si (u) + astby Vu(_a]\/j + b+j))'

ij=1

By (5.3),

ALK, (v.h)n, = Ko(u, p)ng + K, (u, p)A b, + K, (u, p)(ny +A_b,).
By (5.6),

L1840 (Ar, h)n, = 5(9o)(A'PYng + () = E(xo A P)ng
+S(){AP)A_ D) +(D, p)ny +A_b,)}.

Putting formulas above together yields that the third equation of Eq.(5.11) is transformed to the equation:

(o)D) = Ko(u, p)Dny = (o) A'pIng +R " (u, p) = b, on Ry,
where h, =A_ g, ®, and

R7(u,p) =Ry (1, p) = Ko (u, pYA_ib,) = Ky (u, p)(my + A_ib,)

—(8(x) = S(x)NA'PIny — S(X){(AN P)A_b,) + (D, p)(ny +A_b,)}.

Summing up, we have seen that Eq.(5.11) is transformed to the following equations:

Au = Div(p(yo)D(w) = Ky (u, p)1) + R (u, p) =h in RY,
Ap+ A () -V'p—u-ny+ RS(u, p) =h, on RY, (5.31)
(1(y9)D) — Ko (u, p)Dny — S(y )(A'pIng +R ' (u, p) = b, on Ry,

where h=A_ go®, hy=g,o®, h;=A_g,o®,and R3w,p), RE(u,p) and R7(u,p) are linearin u and p and satisfy

the estimates:
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R’ P < " ’ " " 3"" lH

" (, )||Lq(R]+v) CM\( qu(IR’X) Lq(Rf)) CMZ("u"”elf(M) " " 5(M>)}’

R 6 0 || <CM ||V 2 || +

" o (1:F) WqH/q(RS’) CM V7 L, ®Y) €y "u"H}z(R%’

Ry P =C " 2" " 3'[" H 7b‘ H

|| 7 )||Wt1271/q(R{)V) M (V7w Lq(]Rﬁ,) Lq(]Rf,v)) M2 ("u" flI(RQ]) " " g(RQ])}, (5:32)

||R 7(u"o)"Lq(IR’f) < CMI("vu"Lq(Riv) Jr||v2’0||1,q(1|2<’+\7)) * CMZ ("u"Lq(RQ/) + "p"H,],(RQ[))’
||R 7(u’p)||H}l(]R1f) < CMI("VZu"Lq(M) +||V3p||Lq(RQ’)) + CM2 ("u"H}](Ri\’) +"p"H§(RiV))'

Here and in the following, ¢ denotes a generic constant depending on N, ¢, m;, and m, and C,, a generic constant
dependingon N, ¢, m, m,, m; and M, . By Theorem 4.1, there exists a large numbger 4, and operator families A (1)
and H,(4) with

Ag(A) e Hol(A,, ;L (Y (RY),HI(RY)Y)), H(2)eHol(A, ,,L (Y (RY),Hy(RY)))
such that forany 1€ A, ; and (f,d,h) e, (RY), ¥ and p with
u=A,(NF,(f.d.h), p=H(DF,(f.d.h),
where F,(f,d,h)=(f,d,A"*n,k), are unique solutions of the equations:

21 = Div(u(yy)D(w) = Ky (u, p)1) — it in RY,
Ap+ A, (y)-Vp—u-n =d on Ry,
(1(yo)D) = Ko (1, p)D)ng = (3N APy =h, on Ry,

and

scjl2
vzt (@ G PAG 2 €A s D <

K k
Ry ety -t o v, (@) AH ()| 2 € Ay sy D <1
for s=0,1, j=0,1,2,and k=0,1.Where, 7 is a constantdependingon &, N, m, and m,.

Let u=A,(A)F,(h,h,, k) and p=H,(A)F,(h,h,,h) in(5.31). Then, Eq.(5.31) is rewritten as

Au = Div(u(yy)D(u) = Ko(u, p)I) +R > (u, p) =h+RYA)F,(h,hy,h,) in RY,
Ap+ A, -V'p—u-ny+RS(u,p) =h, +R}(A)F,(hhyhy) in RY, (5.33)
(1(3)D() = K, (u, p)D1g = Sy XA PIng +R " (u, p) - = by, + R, (A) Fy (h,hy b)) on R},

where we have set

R (A)E,, Fy, Fy, Fy) =R (A (A)F, By, Fy, Fy),H o (A)(F, By, Fy, Fy)),

R (AE Fy, By, Fy) = RE(AGANE, By, 5 Fy)H o (A(F L By F, Fy)),

Ry (A)F,, Fy, Fy, Fy) =R T (Ay(AF, By, Fy, Fy),H o (A)EL By, F, F)).
Let

R’(WF = (R*(WDF.R;(A)F Ry (A)F)
for F=(R.F,,F,,F,)eY,®RY). Notice that
R°(WF =(R*(WDF.R}(MHF,A’RIAF.RIAVF) e Y,(RY) forF=(F.F,.F.F,) e Y,(R)),

and that the right side of Eq.(5.33) is written as (i, 4,,k,) + F°(A)F, (h,h,,h,) . By (5.32), (5.4), Proposition 3.4, and Theorem
4.1, we have

Ry vty (@) (ERP N2 €20 1) < My + Coy (477 4 A7) (5.34)

forany 4 > 4, . Here and in the following, C denotes a generic constant dependingon ~, &, m;, m,, and C,,and Cy,
denotes a generic constant dependingon N, &, m, m,, my, Cx,and M, . Choosing M, so small that C,A7,<1/4 and
choosing 4 >0 so large that c,,,4"* <1/8 and C,,, 4"y, <8, by (5.34) we have

R,y iy (@) (R ()| 2 € Ay < 1/2 (5.35)
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for £=0,1. Since y, >1 and we may assume that C,,, 21, if 2 >64C;,, . then ¢, 47*<1/8 and C,,, 4"y, <1/8.

Recall that for F = (£, F,,F,,F)) e Y,(RY) and (a,n,,h,) Y, RY),

||(1:1’F2’F§’F4)||Yq(R1+V) = "(FI’F3)"Lq(R]+V) + "FZ"WqLI/q(RQ’) * "Etlln}I(Rﬁ’)’ (5.36)
[ )"Xq(nd’) - "h"Lq(Ri\’) +[g "W;’“‘J(R{)V) + "hb"H}I(R’X)
(cf. Remark 2.2, where Q should be replaced by R" ). By (5.35) we have
"FA(R 9(/1)Fﬂ(h,hd,hb))Y||q(Ri\,) < (U D|E, by, - (5.37)

In view of (5.36), when Ai+#0, HP/I(h’hd’hb)HY(RN) is an equivalent norm to H(h’hd’hb)Hx &Y Thus, by (5.37)
qret qitt
(I+R°(V)F) " = Z;(—R%A)Fi)f exists in L (x, (RY)) . Setting
u=AJAF,I+R°(MF) (hhy k), p=HyADF,d+R°(V)E)  (hhy.hy) (5.38)

by (5.33) we see that » and p are solutions of Eq.(5.31). In view of (5.33), (/+F,R°(1))" = ijo(—F,IR9(/1))j exists in
L (Y, (RY)), and

)

L (Yq(RQ’))({(Taf)é(l +FR7(A) A€ Ay 1) <4 (5.39)

for ¢=0,1. Since
F,(0+R°(DF) " =F, Y (-R (WF,)Y = Q (-F,R’(A))F, =1+ F,R’(1)'F,,

Jj=0 Jj=0
defining operators A,(1) and H,(1) actingon F =(F,F,,F,F,) e Y,(R)) by
A(DF = Ay + ER)'F, H(WDE =Hy()(1+F,R°(A)'F,
by (5.38) u =A,(A)F,(h,h,;,h,) and p=H,(A)F,(h,h,,h,) are solutions of Eq.(5.31). Moreover, by (5.39) and Theorem 4.1

0412
L<vq<Rf+V),H§'f<R’+V)N>({(TaT) WTRANIAEAq s, 3) <4,
(5.40)

Leqak
s oy, (@ GO A€, D) <4,

for /=0,1, j=0,1,2 and k=0,1. Recalling that
v=Aluo®  h=po® ' h=A_ go® h, =g, o D,h;=A_ g, oD,
we define operators A,(1) and H,(4) actingon F =(F.F,,F.F,)e Y, () by
A (F, Fy By, Fy) = AS[AA)A_F 0 @, Fy 0 DAL F, 0 @, F, o @) o 7',
Hy(F Fy By, Fy) = [H((A)H_ F o @, Fy e ®H_ Fy 0 @, Fy o )] 07,

Obviously, given any (g,g,,g,) €Y,(Q,), u=A,(DF,(g.g4.8,) and h=H,(A)F,(g.g,.g,) are solutions of Eq.(5.11). From
(5.1) we have

[V @™, g, = Cx Ve oy, + G Vel o)

go q>—1||Hg(Q+) <Cy ||g||”5(RJ+V) for(=0,1,2,

e @], yr o, < C Wil forhE=0,1.2.

®Y) @)

and so, in view of (5.12) we can choose 1, > 4, suitably large such that A,(1) and H,(1) satisfy (5.12). This completes
the existence part of Theorem 5.1.

The uniqueness can be proved by showing a priori estimates of solutions of Eq. (5.11) in the same manner as in the proof
of Theorem 3.5. This completes the proof of Theorem 5.1.

Proof of theorem 2.1
Some preparation for the proof of theorem 2.1
First, we state several properties of uniform ¢* domains (k=2,3).

Proposition 6.1 Let k=2 or 3 and let Q be a uniformly ¢* domain in R¥. Let M, be any number in (0,1). Then, there

(©)
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exist two positive constants M, and 5, depending on A, , at most countably many A~ -vector of functions @, e c*(R")"
and points x% e and x} e such that the following assertions hold:

1) The maps: RY5xrs@,(x)cRY are bijections satisfying the following conditions: V®;=A]+5) V(@) =A  +B]_,

where A/ and A/ are NxN constant orthonormal matrices, and g, and B;_ are NxN matrices of C*'(RY)
. : N . o . .

functions defined on ®* which satisfy the conditions: [(s).5; )|, v <M, and HV(BJ’BJ‘,*)HMRN) <C,,Wwhere ¢, isa

constant depending on constans «, f and K appearing in Definition 1.1 but independent of M, . Moreover, if k=3,

then HVZ(B;,B;r)HLw(RN) <M,.
Q= B, Mol (@,RHNB (). B, (HcQ
@ ,(RY) "B, (x}) = QN B, (), D, (RY) N B, (x}) =T N B, (x}).

2)
3) There exist ¢” functions ¢/ and (i (i=01l,jeN) such that o0<¢i.fi<1, supplicsupplicB, (x)),
i Zi Zi_ i ! ® o= e} -
vaj sk @y | Sl vy S M2 s 65 =1 ON suppgs, Zf:oz_,':1§f lonQ, ZH;/ lonr.

4) There exists a natural number L>2 such thatany L+1 distinct sets of (B, (x})|i=0,1,2,;=1,2,3,...} have an empty
intersection.

Proof: A proof is given in Appendix 10. In the following, we use the symbols given in Proposition 6.1 and we write
Q,=a ([RY),and T, = (RY) for the sake of simplicity. In view of the assumptions (1.2) and (1.3), we may assume that

| (x) = p(x7) € M, for anyx € B, (x});
| p(x) = pa(xh) [< M| S(x) = S(x}) [< M, for any x € Q; "B, (x});
| A, (x)— A, (x;)|<myM, for anyx eT; "B, (x}); (6.1)
my < p(x),0(x)<my, |Vu(x)|,|VSo(x)|<m, foranyxe Q,
| A (x)|<m, foranyxel, HAGHW,Z’”‘I(D < m3cr*b for anyo € (0,1). (6.2)
Here, m,, m, m,, my, o and r are constants given in (1.2) and (1.3).

We next prepare some propositions used to construct a parametrix. In the following, we write B} = B, ) for the sake of
simplicity. By the finite intersection property stated in Proposition 6.1 iv, for any r €[1,) there exists a constant ¢, , such
that

I, sty 1 < Cral g for amy £ L@, (6.3)
=1

Proposition 6.2 Let X be a Banach space and x" its dual space, while | .

.+ ||+ - and <.,-> be the norm of X', the norm

of x*, and the duality pairing between of X and x*, respectively. Let neN, /=1,...,n,and {g}], = C, and let {fjl}j?:l

be sequencesin x* and {gj.}j?:l R be sequences of positive numbers. Assume that there exist maps N ;X —>[0,0)
such that

< fLo><MgiN (9) (=1,....n), [<Yafl.p><MhN (p)

1=1
forany ¢ € X with some positive constant A, independentof jeN and /=1,...,n.If

X)) < Sfn) < S0 = (vslel )
Jj= Jj= Jj=

with 1<g <o and ¢'=g/(¢g—1) for some positive constant A, , then the infinite sum /= Z

©

- /| exists in the strong

topology of x* and

< M3M4(i(h DN (6.4)

X J=1

|7] = Mam, e,
j=l

n
Za,f !
=1

Proof: For a proof, see Proposition 9.5.2 in Shibata.”® Let neN,, feH,(Q), and let 5, be functions in ¢y (8) with
' <¢, for some constant ¢, independent of jeN. Since QnB,=Q, B}, by (6.3)

g"’ﬁf :g(RN ¥ g"”}f <C, |11 (6.5)

1y (@)
The following propositions are used to define the infinite sum of R -bounded operator families defined on RY and ;.

3 eN)

q
HY(Q))
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Proposition 6.3 Let 1<g <o, i=0,1,and neN,.Set H’=R" and H/=q,. Let 5} be afunction in Cy(8}) such that
H’71 @ <¢ forany jeN with some constant ¢, independent of jeN. Let f; (JeN) be elements in HY(H ) such
H RN

that Zil"fl

:n(Hi) <o . Then, Zlen_ﬁf/ converges some f e H/(Q) strongly in (), and
gyt ? 0

"f"Hg' Q) < Cq {2"/3
J=

Proof : For a proof, see Proposition 9.5.3 in Shibata.?®

9 }l/q
H‘;'(HJ’-)

Proposition 6.4 Let 1<¢g<w and n=2,3. Then we have the following assertions.
1) There exist extension maps 77:w;"(I',)— H!(Q;) such that for any new;"r,, 7'h=h on T, and

\T."h

J

< C|#||,,n-114 . , With some constant ¢ >0 independent of jeN.
Hy(Q)) Wy T

2) There exists an extension map 7:w,"4(I')— H}(Q) such that for new "), I'h=h on T and
T 'h SCH”HW;-I/q(r) with some constant ¢>0.

Hi ()
Proof: For a proof, see Proposition 9.5.4 in Shibata.3®

Proposition 6.5 Let 1<g<w and n=23 and let » cCy(B)) (jeN) with ||n,~
independent of jeN. Then, we have the following two assertions:

@) S for some constant c,

1) Let s, (jeN) be functions in w, e such that Zj‘;l”fj

g, <o and then the infinite sum >
2V j

}l/q

n—1/ i n—-1/ < g
converges to some f ew,~"¢(I) strongly in w4 and ||f||wq"—“q<r) < Cq{zufj W)
j=1

2) Forany new, (1), i"’hh
j=1

9 q
anfl/q ;) < C"h"W;—l/q(r,) ]
Proof: For a proof, see Proposition 9.5.5 in Shibata.3®
Parametrix

In this subsection, we construct a parametrix of reduced Stokes equations (2.4). Let {5} jen and {f}}jeN (i=0,1) be
sequences of C; functions given in Proposition 6.1, and let (,d,h) e ¥, () (cf. (2.14)). Recall that o, = (RY) and
I, =d,(Ry). Let

() = &)+ (1= S Nu)), 8;(x)=EHx)8(x) +(1-Ej(x))5(x)),
4, ;0 =) 4, () + (1= £ ()4, (x}).
Notice that
Clu=Ciuh, $8=815,, (A, =404,
because f]‘ =1 on supp; . We consider the equations:

Ju =Div(u) D) - Ko,HD =L in RY; (6.6)
At = Div(;D(uj) = Ky 1t hy)I) =g in Q,
Ahy+ Ay Ve by =n; =Cd onT;, (6.7)
(u;D(u}) = K, () h)Dny = 5, Aphpn; = ¢ ih onI';.

Here, for 4 e H;(]RN)N , Koj(u)e I:I;(RN) denotes a unique solution of the weak Laplace equation:
(VKo ). V) y = (Div(y‘?D(u))—Vdivu,V¢)RN for anyg e HL (R™). (6.8)

And, for ueH;(Qj) and heHs(Qj), Klj(u,hj)eH;(Qj)+ﬁl;,0((2j) denotes a unique solution of the weak Dirichlet
problem:

(VK ,).V)q, = (Div(;D(u)) = Vdivi,Vp)g  for anyg e Hyo(Q), (6.9)

subjectto K, ;(u,h) =< u;D(u)n;,n; > ~divu—&,Ar h ON T Moreover, we denote the unit outer normal to 1, by »,, which

are defined on R" and satisfies the estimate:

<C, HVn
)

/HLOC(RN) <Cx, HVznjH

anHLw(RN Loy = O

(©)
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Let Vi, = (@es0y0) with 5, =o/ax; for y=a (x,0)er, and let Ar, be the Laplace-Beltrami operator on r, which
have the form:

Ap f=Af+Dy f on @;\(T),
where A’f=z f and D, = ZM al,6,0 f+z a,{a f,and aké and ak satisfy the following estimates:

<
Hak(’HLw(RN) <CM,, H(a]aklﬁ"'!aN—lakPak )HLOC(RN) < Ck,
H(@lak/é,...,GN_lak/[,a,{)HHi)(RN) <Cyy-
Notice that », =n and A, = A ON ', " B} =T B . We know the existence of K, (u}) e Hy(R") possessing the estimate:

[VK,, @) (6.10)

0
Ly ®RY) <CHV”1H1/}1(RN)'
Let p be a function in cy(B,) such that J'dile. Below, this p is fixed. Since K, (u})+c also satisfy the variational
equation (6.8) for any constant ¢, we may dssume that

IBOKO,(u )p(x—x)dx = 0. (6.11)

Moreover, choosing M, € (0,1) suitably small, we have the unique existence of solutions Klj(uj,h )eH (Q; )+H 0(Q)) of

Eq.(6.9) possessing the estimates:
"VKU (u}’hf )" - C(" "H1 ©)) "h/'"W;’”q(rj))' (6.12)

Let 7,(Q)) and Y, (Q)) be the spaces defined in (2.14) replacing Q by Q. By Theorem 3.1 and Theorem 5.1, there exist

Lg(@))

constants M, (0,1) and 4, >1, which are independent of jeN, and operator families
S,;(A) e Hol (2, ;L (L, R™)",H;(RY)Y)), S, (1) e Hol(A
H (A) € Hol(A g 4, oL (Y, (Q)).H ()

O'JO}’o— ’L (Yq(QJ)aH;(QJ)N))a
0. 2075 >

such that for each jeN, Eq.(6.6) admits a unique solution uf :SOj(l)g;j‘?f and Eq.(6.7) admits unique
solutions ;=S (MS;F,(f.d,h)  and b, =H(DSF,(f.d,h),  where  F,(f.d.h)=(/.d.A"*hh),  and
CiF,(f.d.h)= (S f.Eid, A"*Eh,C ) . Moreover, there exists a number 7, >0 independent of »,, M, ,and jeN such that

Ly @y 2k, (@) A28y, (DA€, 40 1) <,
i,y (1) (S DA A 470D <13 (6.13)

(@) (AH (AN | A€ Ay sy }) <y,

L(Y Q; )Hq

LY (@)).Hy " (@)
for £=0,1, jeN, k=0,1,2,and n=0,1. Notice that 4,y > 4,.
By (6.13), we have

12 0 0
|/“|| || JL ®N) +14] ||uf||H}1(RN)+||u ||H2(RN "C f"L ®Ny’
Al ) 121 W 15 1A I 2, s 6.14
| A1 Lg(Qj)) 4] Hy (@) " HZ(©)) | |" J||H§(Qj) " f||H3(Qj) ( )
<651, ), +15]
Vb(||§,f Lq(n,-)+ Qd qu‘”‘f(rj)+M| "h"Lq(ﬂj)+||h||H(]1(Qj))
for 2eX;,,, - Let
’ ° 1 o 0
”:ZZ J /’ Z (6.15)

Then, by (6.6), (6.7), (6.14), Proposition 6.3, and Proposition 6.5, we have v e #2()" , he H}(Q), and
[4] "“"Lq(g) +A[" "”"H}] @7 "u"Hg(Q) +[A] "h"Hg(Q) + "h"HS(Q)

s C‘Irb ("f"Lq (Q) + "d"qu_l/q () + | A |1/2 "h"Lq (@) + "h"H‘l] (Q)}

for 1eA,
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Moreover, we have

Au —Div(uD(n) — K (u,h)I) = £ -VYA)(f,d,h) in Q,
Ah+ A, -Vih—u-n+F u =d-V2(A)(f,d,h) on T, (6.16)
(uD(u)— K(u,))I —((B +SAL)Dn = h—V3(A)(f,d,h) on T,

where we have set
VI(f.d, ) =V (S d,h) + V3 (A f.d.h),

WA d,h) = 33 IDiv(u(D(&juy) = D)) + Div($ G, D(u)) = ¢ Div(ay DGy,

=0 j=1

VI dh) = VK )~ S OVKy )~ S EWK, il k),
= =
V2N Sod ) = S A, -V - SF (),
= =

VIS d by = VS dh) = V5 ()(f 2 d.h) = V5 (A)(S .. b,

V(S d, ) =D (D) = S D n, V3 (Af,d.h) =D CIKy @l h) = K (u,h)n,
=1 =1

VIS d k)= 2{5(Arj (&h) = CAr 1)+ B (&R}
For F=(R,F,,F,F,)eY,(Q), we define operatorsﬁAp(A) and B, (1) actingon F by
A, (AF = igfs (DR + ig}sl JDEF, B (AMF = ig}/—f JAEF. (6.17)
Then, by Proposition 6.3 and (6.13)/:1/ve have :A:(_ll)Fi(f,d,h) , h :HP(A)F;_(IJ“,d,h) , and
A, (A)eHol(A, ;L (Y, (Q).HJ (")), B,(A)eHol(A, L (Y,(Q),H,(Q)),

/A jl2 -1/2
L (qu),Hﬁ*/(mN)({(’@T) (ATA,NNAEAs DS (CHCoy s (6.18)

({(@,) (A*B, (|2 Ay 4 N (C+Coy 47,

o, 4

L (Y @13 * @)
for ¢=0,1, j=0,1,2,and £=0,1 forany 4, > 4,7, .
Estimates of the remainder terms
For F=(R.F,,F,F)e Y, (), let
VIDF =V'(DF +V,' (DF,

V' (ADF = Y [Div(u(D(S Sy (AEIFR) = £ ID(S, (AT F)))
Jj=1

+Div(¢ T DS, ; (ML) = £ IDiv(uD(S, ;(AET )]

+§[Div(u(D(c}sl,(ﬂ)5}F) ~¢D(S,; (NS
+Div(¢D(S, (M) = & Div(u,D(S, (A ),
V,'(DF =VK(A,(AF.B,(W)F)~ gc,‘?VKoxso,»(/Df?m - gc}wa,(Sl,.(ﬂ)i}F,H,u)g:}F),
VE()F = ZA (- (Ve EDH (DEF) - iF &1s, (WEP),

VIF =V (DF +V (D)F +V5* (DF,

Vi ()F = iﬂ(D(é’ 1S, (WEIF) = ¢DES, (S F)n
=
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VEF = (3C 1K, (S DEIFH (DEF) - K (A, (DF.B,(A)F)in,
=
VO = Y48y (H (DEF) =i H(DEF) + B(EH (DG
=t

Notice that V.*(A)F = Zj’:f (£}1S,;(MEF) for o =0.
Let
VS sd, )=V S d b,V AN d ),V (S ,d, ), V(ADF =V AFV(AFV(AF).
Since u) =S, (AL} f, v, =S,;(MSF,(f.d.h), and h,=H () F,(f.d.h), we have
V(A(f,d,h) =V (D)F,(f,d,h). (6.19)

In what follows, we shall prove that

Re (v, ({@) (EV (D) 2e A, ; DS Cri(e+Cpy (g 7o+ 25") (6.20)
for £=0,1 and 1, > 4,, where y, is the number given in Theorem 1.7.

To prove (6.20), we use Proposition 6.1, Proposition 3.4, Propositions 6.2-6.5, (5.6), (5.7), (6.1), (6.2), (6.5) and (6.13). In
the following, 7, is any number such that , > 4, . We start with the following estimate of V/'(1):

(@) DIAeZ, ;D= CuyiAg " (£=0,1). (6.21)

L (Y (@), Ly (N
In fact, since D, ,,(¢ju) = &Dy, () = (8,8 Dty +(2,,8 D, » AN div($u) — & jdivu = Zle(akéj)uk ,forany neN, {31, <Al

and {F, = (£, Fy. By Fy)bi < Y, ()", we have
q

1 n
[I2r@v' GoF|
=1 Lq(Q)
0 n q n q
1 ~ 1 ~
<cimy YN8, GOER, | dus [ @S, GOEE| e
J=1 =1 HY®Y) =1 )
0 n 9
- 1 -
<CiMIZ P Y| I 2r A Sy, ANER, du
J=1 =t Hy@®Y)
q
1| & -
+ [ X rn@As, )8R du
(=1 b @)
0 n 9 7 q
- 1 - 1 -
<CIMIL R Y A ISR dus [ r@E du
j=1 =1 Lq(RN) =1 Y (Q))
,, q
< C;quig"/zrqu; > r(u)F, du.
=1 Lq(ﬂ)

This shows that
1 7-1/2
L (yq(Q))Lq(Q)N)({Vl DNA2ez  D<Cypndy .
Analogously, we can show that
7-1/2
L vy @iy (M DI, 5 DS Coyrdy ',
and therefore we have (6.21).

For re(N,x) and ¢ e(1,%), by the extension of functions defined on r, to o, and Sobolev’s imbedding theorem, we
have

HabHqu’”q(rj) <Corx HaHH(%(Qj)HbHqu’l/q(rj)

forany ae H}(Q) and »ew?~"(r ). Applying this inequality, we have

|4, «vig! )Hj(/l)f}F)||W;_”q(rj) < Cq,rMmyo”" |H j(/l)g:_;.F"H%(Qj)
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for o €(0,1) . Thus, employing the same argument as in the proof of (6.21), we have

n2 7-1/2 _
oV (@G DIAEA 1< Cpn i (E=0),

l\y2 -1 __-b 7-1/2 —
L(yq(m’qu—l/q(l_»({(Taf) VoD 2eA ;D<Cyyn(dg o +47) (£=0,1)
for o €(0,1).
Employing the same argument as in the proof of (6.21), we also have

vy, (@ AV AEA, DS Curdg? (=01,

(@) V, (D 2eA, ; DCyyndy? (£=0.D),

L (Yg @,y mM)
for m=1 and 3. Noting that n¢} = ¢} and &2} = 5j¢) , we have

S¢1K (8, (DEJFH (D)~ K(A,(4)F. B, ()F)
= < EIDS, (DEF) = DIELS, (] Fn >
5 (6.22)
= 2AG VS, (DEGF ~div($}S, (D)}
=

=S, H (DS = b, (CH (DS F) = 2B (EH (DEF)
j=1 j=1

on I, where we have used A, = Ar, and n=n, ON T, ~ B}. Employing the same argument as in the proof of (6.21), we
have u

Cral/2y /3 7-1/2 -
Ry sy, (G0 AN 1A€A, 2 D < Crpn &5 (2= 0D,

Loy, (@I W DIAeA, ;NS Cpn & (=0,
The final task is to prove that

(@) D) | 2eA, 3 NSC, (6 +Chpy oAy, (£=0,1). (6.23)

L (Yg(@).L,(ON)
For this purpose, we use the following lemmata.

Lemma 6.6: Let Q be a uniformly ¢* domain in R” . Then, there exists a constant ¢, >0 independent of jeN such that
apl
2"¢’"H}](Qj 03.11.) <q ||v¢"Lq ©; r\B}.) for anyp e Hy o (€2)),
ap
HWHH}](QmB}) <q "V ‘//"Lq(QmB},) for anyy € Hg o (€2),

"go -¢; ((p)" ) <¢ ||V(/7||Lq(3?) for anyp e Ijll1 RN,

H(II(B?.
agl
"W _cf('//)"H}](B?) <q "VW"Lq(B?) for anyy e Hy ((Q).
Here, ¢,(p) and ¢,(y) are suitable constants depending on ¢ and y, respectively.
Proof: For a proof, see Shibata [Lemma 3.4, Lemma 3.5].%3

Lemma 6.7 Let 1<¢g <. For uc H2(R"), let K,,(u) be a unique solution of the weak Laplace equation (6.8) satisfying
(6.11). Then, we have ’

||K0j(u)||Lq(B?) < C"V”"LqURN)' (6.24)
Proof: Let p be the same function in (6.11). Let y be any function in cy*(89) and we set
7 (0) =y () = pr = D[y ().
Then,
ye CSO(B?)’ IRNV;dx =0, HWHLqr(B?) <Cy H‘//qu(B?) : (6.25)
Moreover,
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~ 1l L. | ~
e Hq(RN) =H, RY), "W"FI;,I(]RN) <Cy "'//"qu(RN)' (6.26)
In fact, by Lemma 6.6, for any ¢ e H}I,(RN) , there exists a constant e for which

"(p ||L (BO q" q)"L (BO
Thus, by (6.25), we have
@) FI@Tap=e)) o K17, ) 0, 8y <Cal 0, IV 0l )

which yields (6.26). Let ¥ be a function in H(R") such that vw e #!.(RY)",
(VE,VO) y =(7,0),y for anyd e HyRY), ||V‘P||H‘11, &) SCO,, o) +||://|| L&V (6.27)
By (6.25) and (6.26), we have

(6.28)

[V, 2y < Co

H;,(R Ly ®Y)
By (6.11), (6.27), and the divergence theorem of Gauss, we have
(Ko, @)y = (Ko ).97) = (VKy; @), V'Y)_y :(Div(yj.’D(u))—Vdivu,V\P)RN
——(ij(u) V¥) Y + (divu, AY) QN
and therefore by (6.28)
[ (Ko, (”)"//)RN < CHV“”L,,(RN) HW"Lqr(RN) >
which proves (6.24). This completes the proof of Lemma 6.7.

Lemma 6.8 Let 1<g<w.For uc H2(Q,) and he H}(Q)), let K, (u,h) e H)(Q,)+H,,(Q,) be a unique solution of the
weak Dirichlet problem (6.9). Then, we have

;.

L,(Q; ﬁB})

JPN 7 e L
Lqm) Lg(Q)) H(Q)) H2(9>

< C("V”"Lq(gj) 4 "h"Hg(Qj) +||V2u||
Here, the constant ¢ depends on ¢ and C; .
Remark 6.9 By Young’s inequality, we have
||K1.f(u’h)||Lq(Qj r\B}) . 8(||V2u||Lq(Qj) + ||h||H3(Qj)) & Cé'("vu"Lq(Qj) +||h||H¢%(Qj))
forany ¢ €(0,1) with some constant ¢. dependingon ¢ and ¢ .
y N, 9 q

Proof: For a proof, see Lemma 3.4 in Shibata*?. To prove (6.23), we divide V,'(1) into two parts as V,' (1) =V V! (1) + VL (1)
where

(6.29)

VAl(DF = K(A(DF.B,(DF) = 351Ky (S (DS R) = 2 LK (S (ASTF.H j(A)SF)),
Jj=1 Jj=1

VLF = Y (VEKy (Sy, (WER) + S VYK, (S, (WEFH ,(H)EF).
Jj=1 j=1

By (2.1), (2.2), (6.8), and (6.9), for any q)eﬁl;'o((z) we have (VV,\F,V@), =1-1II , where

1= (Div (uD(A (DF) = Vdiv(A ,(A)F),V 9)g,

1= Z((V§ )Ko,(So,(DETR).V(p—e; ))Q+Z((V§ K (S (WS FH j(AEF)LV 9)g

j=1

+Z(VKO,~<SO,-(@5}’Fl),wc,‘?(¢—ej)))g +Z(VKU(SU(z)ij-F,Hj(4)5}F),V<z:}¢))g

—Z((VC WK (So;(DETF).0—e€))g — Z((VC WK, (S,;(DEFH (A F),0)q.
Jj=1
Here and in the following, e; =c; %(p) are constants given in Lemma 6.6. By the definition (6.17), we have

Jj=1

1= On(uDES, (DEUF) - Vdiv(C?S, (DEF).V 0)._x
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+i(DiV(ﬂD(§ 1S (S HF) = Vdiv(¢ S, (S F).V p)g

Jj=1

= YD (UID(S, (DEVF)) - £ IVdiv(S, (DEIR).V 9y
j=1

+ 2D D(S, (DS = EVdiv(S, (S F)LY o + 111,
where i
1 =3 (Div(uD(& ]S, (S ] F)) = ¢ Div(uD(Sy (DTN Vo)
J=1

=2 (VAV(E7S) (ASTR) = £FVAiv(S, (DS TRV 9)a

J=1

+2 (Div(uD(}S, (WS F) = & Div(uD(S, (DS F)).V )y
j=1

= (VAiV(CES, (DS F) = £ iVdiv(S, (DS TF),V p)g. (6.30)

Jj=1
Since ¢J(p—e;) e, (RY), and {jpeH, ,(Q,), by (6.8) and (6.9), we have
11 = Y A&TDV(UiD(S) (ASTR)) = §7VAiv(Sy (AETF).V ),y

J=1

+2EDW DS ;(AGF)) = § V(S (DS 9)g + 1V
where we have set 4

IV =3 {2(Ky (S (AT EN.V h)g + (Ko Sy, (DETFNAL ) —€))g

J=1
+2(K, (S, (WEFH (DSFNVED,Y ) + (K, (S (NS F,S(ASFNAL ), 0)q
—(U{D(Sy,(AETR) (VS p=e))o = (1) D(Sy (NS PNV SNV p)g
H(divSy (DS TENAL)),0—e))g + (divSy (DS TRV STV o)g
~(D(S;(DEF) (V2 )).0)a — (14,08, ,(DEF)VE)). Y 0)a
H(divS;(DEFNALD.0)a + (divS (DS F)VE).V p)a-
Thus, we have
(VVNAF, V@) =TT +1V. (6.31)
We let define operators L (1) and M (1) actingon F e Y, (<) by the following formulas:
L (A)F
= 2(Div(uD(§?so,, (WETF)) = & IDiv(uD(S, (DEF))

—2(VAV(E7S, (ST R) = FVdiv(S, (DS F)

Jj=1
+ 2 (Div(uD((}S, (AEF)) = £ Div(uD(S, ;(AEF))
J=1
=Y (VAiV(CS, (DEEF) - CVdiv(S, (DS IF) + 2D (VDK 1 (Sy;(DEIR)
j=1 J=1
+22 (VEDK (S (ASFH (DEHF) = 3 (DS (DETFNVET)
J=1 J=1

+ 2 div(Sy (DETFNVED) = D (DS (DS FNVED + D (div(S; (DEFRNVE):
j=1 J=1
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<M (,1) F,¢ >>
=2 (1]D(S, ;(DETR) (VD)0 = e )a + D (div(Sy (DETFNAL). 9~ e))a
Jj=1 j=1

+Z(Ko,- Sy, (DETFNAL)P—e))a = Z(ﬂ}D(Sl,- DEF): (VD)

+Z(le(31 JAEFNAS9)q +Z(K1 (S IFH (S F)AL ), 9o

J=1

Here and in the following, 1, { () denotes the dual space of A, ,(©2),and <<..>> denotes the duality between (<)
and Al ().
q',0

Moreover, by (2.2) and (6.9), for xeI" we have
VLI (A)F =< uD(A »(AF)nn>—(S+Ar)B,(H)F —divA (W)F
—Y S (DS, (M FIn on, > =5G)AL H (DEIF —divS, (DS F}
j=1

< uD(¢}S,;(AE;F)n,n >—Z(B +8ASH J(AEF - ZdW(§ S (DSF)

Ms

1

~.
Il

0

= EH< (u(x)D(S, (DS Fnn, > —5(x})Aer SEF —divS, (DS F.
Jj=1
Thus, we define an operator L,(4) actingon F e Y, () by letting

L,(W)F = Z[< u()ND(SS, (NG GF) =& D(S, (DG FNnn>-B (SGH ;(ADEF)
J=1
~S(A(GH (WEF) = $IAH (DS F) = (VNS (DS F
and then, V}(A)F =L, (A)F on T.
We now prove the R boundedness of operator families L (1), M (1) and L,(1). We first prove that

{@)'M ()| AeA, ; D<(e+C, A" (6.32)

L (Yq (0 ()
for ¢=0,1. In fact, if we set

<<M P(D)F,p>>=—(u(x)D(Sy (DS TF): (V)0 —e)g + (div(Sy (DS F AL ), 0 —e))q
(Ko (o, (DETFNAL)), 0~ €))os
<M [(DF,p>>=—(u(x))D(S, (DS F): (VS 0)q
+H(div(S, (DS FUAL ), 0)q + (K, (S, (DS FH (DS )AL, 0)o,
then, by Lemma 6.6, Lemma 6.7 and (6.29), we have

[<<M "(A)F,p>><C,,, Hvs0 j(z)g”j‘?FHL &) Hv(pHLq, (80

[<<M fl(ﬁ')F’(p >>ls {g(HSUé:JI'FHHg(Q ) * HH (1)5 FHH3(Q )

+C&',M2(Hsljé:}FH 1

@) +HH/'M)5JI'FH )}HVgDHLq(B}ﬁQ)'

2
HG(Q))

By (6.3), we have
ZII ;. ) ZII ol » o <GVl

forany pe ﬁ«];:o(Q)- By (6.13), (6.3), and Proposmon (6.5), we have

D [ENDETT IS o CHOKT VI LAIT P

H(Q) HS(Q)

Srbq(;"é;?ﬂ"Lq(RN)+;||4:}F||qu(g ) )<7C, "F"y @ =%

Thus, by Proposition 6.2, M (1)F = Z;IM JF + Zj’:lM J(WF existsin W, 3() forany rey, (o) and
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[m (4)F||;q_g Sl Z"vsoj W)E! F"L ¥, +8"Z||Sl,(/1)§ F||

H2(Q))

ng‘4||H (l)é'ij(/l)é’ F||H3(Q ) EMZ 2"311(1)4' F||H ©; ) 5M2 Z:"H (l)é’ ||H ©)

Analogously, by Proposition 6.2 we have
9 00

S%Z

Q) J=1

0
+e1y

H2(Q)) J=1

+CgMzz

1 1
Hg(Q)) Jj=

q

Z”z (u)VSOj 4 )EJOEV
W‘;}) E

ShM (4)F,
=1

N
Ly ®")

n B q
> wH ;(A)EF,

£=1 H3(Q))

n _ q
D w)S, (A4S F,

(=1

00
+e1y

Jj=1

+C§MZZ

Jj=1

n B q
> wH ;(4)SF,

=1 Q)

n _ q
D1 w)S, (A4S F,

=1

Noting that Q" B} =Q; N B}, by (6.13), (6.5), Proposition 6.5, and Proposition (3.4), we have

100

q.,.49
+ &7 _[Oz
j:

du
L, RY)

Z”z(“)M (A )F

du s Cl T[S

1
0~ O(Q) =

Zw(u)e“ FM

(=1

du
Y, (Q))

S wétr|

(=1

7-/2 4 '\
du+Cly, A" [ Y

Yy (Q)) j=1

Zw(u)é F/

7-q/2
<C (67 +CYyy 2y

Zw (u)E du,

A

which shows (6.32). Analogously, we can prove

L (@1, @Y )({(Ta)L(/l)\/leA ﬂo})<CM2rb/%1/2 -
L (Yg@.y @ v, (1(#@;) ‘L) 2en, ;D Coynde (6.33)
for ¢=0,1.

We now use the following lemma.

Lemma 6.10: Let 1< g <. Then, there exists a linear map E from 3, () into Lq(Q)N such that for any £ e, ()

< |l 1) N0

Ly(©)
<F,p>=(E(F),Vp), forallpeH, (Q).
Proof: The lemma follows from the Hahn-Banach theorem by indentifying 7., ,(©) with a closed subspace of Lq,(Q)N via
the mapping: ¢ — V¢ . Applying Lemma 6.10 and using (6.31) and (6.32), we have
(VVL(DF, V@) = (L (DF +E(M (1)F),V), forall e H (), (6.34)
subject to V,}(1)F =L,(A)F on I', and

(@) EoM (D)|Aex, ; P <Cle+C, o, (6.35)

L (Yg@.2q(@N)
where E oM (4) denotes a bounded linear operator family acting on F by E-M (1)F =EM (1)F) . By Remark
1.5, we have V(A)F =L,(H)F +K,(L (W)F+EM (A)F)-VL,(1)F), and so by (6.33) and (6.35), we see that
VVii(A) e Hol(Z,, ; .L (Y,(Q).L, (")) and

L (Yq(ﬂ),l.q(Q)N)({(raf)éV\/le(ﬂ') |AeZ, ,NsCe+ Cupyto I (6.36)

for 1=0,1.
Finally, by Lemma 6.7, (6.29), (6.5), and Proposition 6.2, we have

Via(2) € Hol(Z,, 5 ,L (Y, (Q), L, (™)),

oo’
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1 7-1/2
] (qu),Lq(mN)({(far) Vi [Aex ;D <Cule+Cohy n,
for £=0,1, which, combined with (6.36) and the formula: V,'(1) = VV,}(1) +V,%(4) , leads to (6.23).

Proof of theorem 2.1, existence part
Choosing ¢ so small that ¢, s <1/4,and 4, so large that
CyrisCupy oAy 7o +40) <1/ 4 (6.37)
in (6.20), we have
RL v (@) EV (DA€, ; )<1/2 (6.38)
for /=0,1. Let 4. be a large number for which 2, z(scqrbcMz’e)z, and then setting 4, = Ly, , we have (6.37). By (6.37),
(I-FV @)™ :Z‘;’:](FAV(/I))J exists in Hol(Z,, PG A())) and
RL (v, ({@) A-FV(A) ' |AeA_ ;1) <4 (6.39)
for ¢=0,1. Moreover, by (6.19) and (6.38)
HFAV(&)(f,d,h)HYLI(Q) <(1/ 2)HF/1(f,d,h)qu(m. (6.40)
Since HF&(f,d,h)qu(Q) gives an equivalent normin vy, () for 2#0, by (6.40) (7-¥(4))" ZZ;OVM)j exists in L (Y, (Q))
.Since u=A_,(DF,(f.d,h) and h=B, (A)F,(f.d,h) satisfy Eq. (6.16), setting
v=A,WE A~V (f.d.h), p=A,ADEA-VA) ' (f.d.h),
we see that ve H(Q)", peH(Q) and v and p satisfy the equations:

Av—=Div(uD(v) - K (v, p)I) =f in Q,
Ap+ A, -Vep—v-n+F v =d onT, (6.41)
WDW)-K,p)I-(B +oAp)p)hn =h onT,

Moreover, by (6.19) we have F,(I-V (1)) = - F,V (1))'F, . Thus, setting
A=A, -FVQA)", H,()=B,A)I-FV®)"

we see that v=A_ (1)F,(f.d,h) and p=H (A)F,(f,d,h) are solutions of Eq.(1.6). Since we may assume that 1.y >4, in
(6.18), by (6.18) and (6.39), we have

(1@, (WA, ()| A € Ay sy DS Cyti,

LY @.H @V ohre

L (yq(Q)J,;_km))({(far)[(ﬂk"/r(ﬂ)) |2 €A; sy, 1) SCyuty,
for ¢=0,1, j=0,1,2 and k=0,1. This completes the proof of the existence part of Theorem 2.1.

Uniqueness, a proof of theorem 1.10

In this subsection, we shall prove Theorem 1.10. Let uquz(Q)N, qu;(Q)+]—A[;)O(Q), and heH;(Q) satisfy the
homogeneous equations:

Au—Div(uD(u) —ql), divu =0 in Q,
Ah—u-n =0 on T, (6.42)
(uD(u)— gl —S(Ap)h)Dn =0 on T,

where s is a positive constant. We shall prove that » =0 and 7 =0 below. Let 4, be a large positive number such that for
any iex,, the existence theorem holds with ¢'=(¢-1)/q. Let s () be a solenoidal spaces defined in (1.7) and let
g beanyelementin j_(Q).Let ve Hj(Q)N , peHL(Q)+H) (), and pe H;,(l") be solutions to the equations:

Av —Div(uD(v) - p)I) =g in Q,
Ap—n-v =0 onT, (6.43)
(uDW)=p)Dn—((r+Ap)p)n =0 on I'.

Let K(v,p) e H) () + H), ,(<) be a solution of the weak Dirichlet problem:
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(VK(,p),V p)g = (Div(uD(v)) — Vdivv,V @), for anyp e H, ,(Q), (6.44)

subject to K (v, p) =< uD(v)n,n>-3Arp —divv on I'. And then, as was seen in Subsect. 2.1, p=K(v, p) . This facts yields
that v, (@) . Infact, forany g e f) ,(Q), we have

0 =(gVPlo=A(V,Vp)g —(Div(uD(V)),Vp)g + (VK(V,p),V9)q (6.45)
= /T(V,Vgo)Q —(Vdivv,Vp)q.
Since H) ,(Q) < A () , forany e H, ((Q), we have
0= A(divv,), + (Vdivv,Vo),.

Choose 4, >0 larger if necessary, we may assume that the uniquness of the resolvent problem for the weak Laplace-
Dirichlet operator holds, and so divv=0. Putting this and (6.45) together gives (v,Vgp), =0 for any gpe[-AI;,O(Q) , that is
veJ, (). Moreover, by Definition 1.6, 1 s, () -

Since pe H.(Q)+H, o(), We Write p = 4, + 4, € H,,(Q)+ H), ,(<2) - And then, by the divergence theorem of Gauss
(,Vp)g = (u-n,p)r —(divu, 4)q = (u-n,p)r
because 4 e J, (), A e H;(Q) ,and 4,=0 on I'. Thus, by the divergence theorem of Gauss we have
(u,8)q = A(u,v) — (u,Div(uD(v) - pD)q
= A(0,¥) = (0,(4D(¥) = ) + (T D). D(W)g

= A(u¥) = (@ 0,880 p)r + (2-D(). DY)

Since Ah=u-n, we have

(1.2)g = Au¥)a + 26(Vch,Vep)r + (- D.DW)g. (6.46)
Analogously, we have

0= (Au = Div(uD(u) = g1),v)q = A(u,V)g + AS(V 1, Vo) + (%D(u)aD(V))Q’
which, combined with (6.46), leads to
(#,8)o =0 forany geJ (). (6.47)

Forany feCy(@)", let y e ) () be a solution to the variational equation (f,Ve), =(Vy.Ve), forany ge ) ()

.Let g=f-Vy, and then ge (@) and (u,Vy),=0. Thus, by (6.47), (u,[)q = (u,g)q =0, which, combined with

the arbitrariness of the choice of 1, leads to u=0. And then, by the second equation of (6.42) yields that »=0. This
completes the proof of Theorem 1.10.

A priori estimate

In this section, we consider the uniqueness. If 4. =0, F v=0, and Bp=0, then, as was seen in Subsec:6.5, we can
show the uniqueness of solutions by using the existence of solutions of the dual problem. But, in the general case, we can
not find a suitable dual problem, and so to prove the uniqueness we derive a priori estimates. For this purpose, we have
to restrict our domain Q slightly. We introduce the notion of finite covering domains.

Definition 7.1: Let k=2 or 3 and let Q be a domain in R” . We say that Q is a uniformly ¢* domain whose inside is
finitely covering if Q is a uniformly ¢* domain and the following condition holds: v Let {(;}}j’:l (i=0,1) be the partition of
unity given in Proposition 6.1. Let

O = {(UsuppV ¢y o (UsuppVeptmQ.
=1 =

Then, there exist a finite number of subdomains o, (j=1...0 such that O < U[~:.Oj and each o, satisfies one of the
following conditions: !

a) There exists an R>0 such that 0,cQy, where Q, ={xeQ|x|<R},

b) There exist a translation 7, a rotationA , a domain p cr"', a coordinate functions a(x') defined for x'eD, and
a positive constant » such that 0<a(x)<b for xeD, Aer(0))c {x=(x,xy)|x" €D,a(x) < xy <b} C A o7(Q),

{x=,xy)eRY |x e D,xy =a(x)} cA or(D).
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Where, for any subset £ of RY, A (E)={4x|x e E} with some orthogonal matrix 4 and z(E)={x+y|x e E} with some
yeRY.

Example 7.2: Let Q be a domain whose boundary T isa ¢* hypersurface. If Q satisfies one of the following conditions,
then Q is a uniformly ¢* domain whose inside is finite covering.

) Q is bounded, or Q is an exterior domain, thatis, Q=R" \O with some bounded domain O .

Q=RY (half space), or Q is a perturbed half space, that is, there exists an R>0 such that Q~ B* =RY ~ B%, where

2
@ BR={xeR"|x|>R}.

3) Q is a layer L or perturbed layer, that is, there exists an R>0 such that o~B®=L~B%. Here
L={x=(x,xy)eRY|x' =(x,...,xy_) € RV ,a < x <b} for some constants « and » for which a<b.

(4) @ isatube, thatis, there exists a bounded domain D in R¥™" suchthat Q=DxR.
(5) There existan R>0 and several orthogonal transforms, R, (i=1,...,M ), such that T~ B* = (UZIR,.Ré")mBR .

(6) There exist an R>o0, half tubes, 7, (i=1,...,M), and orthogonal transforms, R, (i=1,...,M), such that
QnB* =(UZIRI.7}.)mBR, where what 7, is a half tube means that 7, = D, x[0,20) with some bounded domain D, of

i

RN,

In this section, under the finite covering assumption, (6.2), and (?7?), we prove a priori estimates of Eq. (2.4), and as a
result, we have the uniqueness of solutions. The following theorem is the main result of this section.

Theorem 7.3: Let 1<g <. Let Q be auniformly ¢* domain whose inside is finite covering. Then, there exists a 4, >0

such thatforany ieca,,, and (u,h) e H;(Q)" xH,(Q) satisfying Eq. (2.4), we have

[4] "“"Lq(o) + A" ||”||H}1(Q) " "”"H(%(Q) +[A] "h"H(%(Q) i "h"H;(Q)

(7.1)
< C{"f"Lq (@) + "d"qu*l/q(l“) W | A |1/2 "h"Lq(Q) + "h"H}I(Q)}'

Corollary 7.4: Let 1<g<o. Let Q be auniformly ¢* domain whose inside is finite covering. Then, there exists a 4, >0
such that the uniqueness holds for Eq. (1.6) forany 1< A

o076 "
In what follows, we shall prove Theorem 7.3. We use the same notation as in Sect.6. Let uj = {;u and hj = (}h .And then,
0

u; satisfy the equations:

Auf = Div(u(x))D?) - Ky ,(wHD) = £ in RN, (7.2)
And also, ui and h; satisfy the equations:
Ay = Div(u(x};)D(u') — K, (uy, h)T) =f in Q;,
Ahj+ Ay (X)) Vi by =n;-u; =d, on T, (7.3)
(u(x))D(u}) = Ky (u), h)Dn; = S Ar hny = by on T

Where, we have set
17 = &5 + & Div(u(x)D(w) — Div((x)D({ ju)) + Div(p(x) = p(x})D(L ju)
~(&FVK (. h) = VK (w)):
i =&} +&Div(u(x)D(w)) = Div(u(x)D(& ) + Div((pa(x) = p(x))D(C )
~(§ VK (u,h) = VK, ;($u.Eh));
d; = ¢d = (A (0) = A, () Vi by = A, (X)) (§V e =V (EG) = §GF us
hy = §h =& (u(x) = u(x)D(u) + ()& D) = D))+ (K (u,h) = K(&Gu, & h)n
+C5(B hn+C(8(x0) = SN Aphn +8(x)(¢ Ak = Ap ().
Set

By ) =1 21l g 121 il o+l 121 T+
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Employing the similar argument to that in Subsec. 6.3, for any positive number » we have

q

E; (u.h) ch("f;‘)";@”’)+||f11’||;(9, "d " 2 Var, )+M|q/2 "h ||L ©)) "h/‘"H}I(gj)}

<l 1l #1217 I+l 72 B 74)
+(0? + M q)(||”"H2<m ||h||: @t1? " "h"H @)

+Conry ("”"H}I @4 " "”"Lq o7t "h"f_, 2

+| A2 ||h||”’ o) K@D o))

Where, ¢, ,,, is a constant depending on » and M, , and we have used the assumption that
(Usuppv ¢y o ((Jsuppv ) =0.
j=0 J=1
To estimate |K(u,n)|, 0, e need the following Poincarés’ type lemma.
q

Lemma 7.5: Let 1<g <o and let Q be a uniformly ¢?> domain whose inside is finite covering. Let O be a set given in
Definition 7.1. Then, we have

"¢"Lq ) < Cq,O ||V¢||Lq Q) for any g € ﬁiw ()
with some constant Cq,o depending solelyon O and ¢.
Proof: A proof of this lemma is given in Appendix 11 below. We now prove that for any » >0 there exists a constant Corty
depending on » and M, such that
K@D, 0 = @l * 2 0+ oo Qlls )+ 2 ) (7.5)
For this purpose, we estimate | (K (u,%),), | forany y e Cy(©O). By Lemma 7.5,

[(@.9)a I “(DHL,I(O)H‘//"Lqr(O) <Co HV¢HL,,(O)H'//||Lqr(O)

forany ¢ e H; 0(Q) - Thus, by the Hahn-Banach theorem, there exists a g Lq,(Q)N such that lell, @ <Cyo and
X -

oWl
@¥)a=Ve.8)q (7.6)

for any pe ) (). In particular, divg=-y , and therefore ”dingLq’(Q)SHWH By the assumption of the unique

Ly©) "
existence of solutions of the weak Dirichlet problem and its regularity theorem, Theorem 10.1 in Appendix 10 below, there

existsa v e 19}1,,0(9) such that V2¥ e Lq(Q)N , ¥ satisfies the weak Dirichlet problem:
(V¥,V@), = (g, V), for anyp e H,(Q) (7.7)
and the estimate:

[ve| (7.8)

H;v(Q) < 9,0 ||W||Lqr(o)'

Let L=K(u,h)-{<uD(u)n,n>—(B +ocAp)h—divu}, and then L Eﬁ},,o(g) . Thus, by (7.6), (7.7) with ¢=L and the
divergence theorem of Gauss, we have

[ (L))o FI(VL, &) F| (VY. VL), |
< (Div(uD(u)) — Vdivu,VY¥), |
+|(V{< uD(u)n,n > —(B + oAp)h —divu},V¥), |

< oy 19l o, #Jnvn. ], I, (0l g+ P2, o1

Using the interpolation inequality: || )_CHVvH”" v["¢ and (7.8), we have

Ly(T Ly(@) 1M1z, (@)

[(Ly)q = {a)("V u"Lq(Q) + "h"Hg(Q)) + Cw,Mz (llvu"Lq(Q) + "h"Hg(Q))}"u/"qu(O)’

which leads to

"L"Lq(Q) < w("Vzu"Lq © + "h"HS(Q)) +Coy ("V“"Lq(g) + "h"H(%(Q))'
Thus, we have (7.5).
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Putting (7.4) and (7.5) together and choosing @ and M, small enough and io large enough, we have (7.1). This
completes the proof of Theorem 7.3.

Maximal L|° - Lq regularity

In this section, we prove Theorem 1.9. As an aucxiliary problem, we consider the following equations:

Ou—Div(uD(u)— pI)=F in Qx(0,T),

divu=G=divG in Qx(0,T), (8.1)

(uD(u)-phn=H on I'x(0,T),

ul—o=u, on Q.

The corresponding generalized resolvent problem to Eq. (8.1) is

Av—=Div(uD(v)—gl) = f in Q,
divv=g=divg in Q, (8.2)
(uD(v)—ghn=nh onT.

The following theorem was essentially proved by Shibata3* and can be proved by using the same argument as in the proof
of Theorem 1.7.

Theorem 8.1 Let 1<g<w and 0<&<z/2.Assume that the following conditions are satisfied:
i, Q is auniformly ¢? domain.
;i # isarealvalued function satisfying the assumption (1.2).
iii. The weak Dirichlet problem is uniquely solvable on 7} ,(©) and A ,(©)-
Set
X (@) ={(/.g.g.h)|f e L (", (g.2) e DI (2).h e Hy ()"},
X Q) = {(F, B, Fy Fs F, Fy) | B B Fy € L)Y Fy € Hy ()Y Fs € L (Q),F € Hy ()}
Then, there exist a constant 1, >1 and operator families A,(1) and P,(1) with
Ay(A) e Hol(Z, ;L (X (Q).HJ()"Y)), Py(A)eHol(Z, , .L (X (Q).H)(Q)+H, ,(Q)))
such that for any A=y +ireX,, and (f,g,g.h)eX,(Q), v=A(ADF,(f.g.g.#) and q=Py(A)F,(f,g,g.k) are unique
solutions of Eq. (8.2), where F,(f.g.g.h)=(f,2"*g.g.Ag,2"*h,h), and

0,72
ity (@) G AN A2, <n,

, (8.3)
({(@,) (VPy(A)|A€Z, 1 1) <7

L (Yg@.Lg@N)
for £=0,1 and ;j=0,1,2.Where, 5, is a constant dependingon m,, m, ¢, ¢, K, a, f,and N.
Using Theorem 8.1 we shall prove the following theorem.

Theorem 8.2: Let 1< p,g<o and 7 >0.Assume that the conditions i, ii, and iii in Theorem 8.1 are satisfied. Assume
that 2/ p+1/g#1. Then, there exists a y, >0 for which the following assertion holds: Let u, € B(""7 ()" be initial data
for problem (8.1), and let F,G,G and H are functions appearing in the right hand side of (8.1) with

FeL,((0,7),L,(Y), ¢”GelL,(R,H, ()N H,R,L,(Q),
e”"'GeH,(R,L("), e”HelL,R H(Q")NH,(R,L(Q)")

forany y 2y, . Assume that the compatibility conditions:
Ug =G l=g€ J,(€2), (uD(ug)n)tau = (H|o), for 2/p+1/N<I (8.4)

holds. Then, problem (8.1) admits solutions # and p with
weL,(0,7),H (") H,((0.7),L,()"), peL,(0.7),H)(Q)+H,,(Q)

possessing the estimate:
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H“HLP ©n.m@y Haf“HLp g " [ve HLp (©T).24(@)

<ce” {"”0 "Bgf;’”f’)(g) + "F"Lp (O.T).L4 () + ||6771(G’H)||LP(R,H}I(Q))

~7t —rt
* "e (G’H)"H},/Z(R,Lq Q) "e ! ||Lp(]R,Lq(Q))}
forany y >y,. Where, C is a constant independent of y >y, and ¢, =sup,_.((*> + %)/ (1+7>))"*.

Proof: Let F, be the zero extension of F outside of (0,7), thatis F,(~6)=F(.?) for te(0,7) and Fo(-0)=0 for ¢ (0,7) . We
consider the following problem:

o,u—Div(uD(u) - p) = F, in QxR,
divu =G =divG in QxR, (8.5)
(uD(u)—pn=H on I'xR.

Let L and L' be the Laplace transform and the inverse Laplace transform defined by
_ 7 _ - -1 _ 1 At
LU =f )= [ rode, L7glo =] e“g()de
for A=y +ir e C . Notice that
LI =F [e7 fOlx), L7[gln)=e"F ~'[glv),

where F and F ~' denote the one dimensional Fourier transform and inverse Fourier transform. Applying the Laplace
transform to (8.5) yields that

i = Div(uD(@@) - pI) = E, in Q,
divii = G = divG in Q,
(uD@@) - phHn =H on I.

Thus, in view of Theorem 8.1, setting
u =L [AGADE, (Fy(A),G(A),GA)HNI®), p =L '[Py(A)F,(E(A),G(2),G(A), HAN),

we see that u and p satisfy Eq. (8.5). Applying the estimate (8.3) together with Weis’ operator valued Fourier multiplier
theorem gives?

e ’Vp"

e, wenziay *le7 00 +|
LP(R,Hq(Q)) LP(R,Lq(Q))
+||e’7’(G,H)||

+e 0, } (8.6)

" Lp(R.Ly ()
where we have set A}/ =L"'[1"*f(4)]. By Proposition 3.4, we have

—ytA1/2 "
e A
" 4 pr(R,Lq(Q))

which, combined with (8.6), leads to

(

Ly (R.Lq(Q)

sclen) Aearan)

Ly (R.Lg () L, (R.H} () Ly (R.Lg ()

= ||F A A+ a+ TZ)f(/‘L)]" <c, ||€77tf||

Lp(RiLy(Q) w2

HY 2 (R.14 ()

HLp 2@yt Hat“HL,,, mgen t [val,

T —yt
< CE], 0.1 Her@m
+e [ .1 |eo.0]
4 ||e ( ) Y2 (R.L, () € G Ly (R.Ly ()
To construct a solution of Eq. (8.1), we next consider the initial value problem:

p(O.7),L4 ()

L (R,HY ()

. (8.7)

0,y —Div(uD(v)—gI)=0 in Qx(0,0),

divv=0 in Qx(0,00), (8.8)
(uD(v)—phn=0 on I'x(0,00),

Vo=V in Q.

Where, v, =u,—u|,_,. Obviously, «+v and p+q¢ are required solutions of Eq. (8.1). To solve Eq. (8.8), we formulate it in
the semigroup setting. Given v, let K(v) be a unique solution of the weak Dirichlet problem:

(VK(), V), = (Div(uD(v)) - Vdivv,Vg), foranype PAI}]O (Q), (8.9)

©)
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subject to K(v) =< uD(v)n,n>—divv on T. By the assumption iii in Theorem 8.1, we know the unique existence of
K(v)e Hy(Q)+H, ,(Q) forany ve H;(Q) possessing the estimate:

HVK(V)HLq @< CHVVHH}] @-
Instead of (8.8), we consider the equations:

0,v—Div(uD(V)—-KW)I)= f in Qx(0,0),
(uD(v)—K(v)Dn =0 on I'x (0,00), (8.10)
v ‘1:0: Vo in Q

with v e T, () for any >0 . The corresponding resolvent problem to (8.10) is
Aw=Div(uD(w)-K(wW))=f inQ, (uD(w)-KWw)n|-=0.

Applying Theorem 8.2, we see that problem (8.8) admits a unique solution ve H;(Q)" forany 1%, , and felL (Q"
possessing the estimate:

(8.11)
By (8.9), (uD(w)—K(w)Dn|-=0 is equivalent to (uD(w)n), [=0 provided that w <. (). Thus, we define the domain
D,(©) and the operator A associated with Eq. (8.11) by setting

D, (@)= {weJ, (N H2®)" |(uD(w)n), =0on T},

[ A1 HWHLq(Q) + HWHH(%(Q) s CHfHLq(Q) :

W,w = Div(uD(w) — K(w)I) forweD, ().
Then, the operator A, generates a ¢, analytic semigroup {7(1)}., on ., (<) associated with Eq. (8.11). Let
D, () =(J,(Q).S,(Q),_,, , Where (-,-),; Py is a real interpolation functor, and then, forany v, eD, ,(©), v(.0) =T(t)v,
is a unique solution of Eq. (8.8) possessing the estimate:

i e 2] <c 8.12
e +|le A% > A% 2(1-1/ .
" L (0.9, HZ () L, ().Lg (@) H OHqup Y@ (8.12)

forany > 4, , where C isindependentof y . Notice that v e D, (2 holdsifand onlyif ve B},"""(Q) and (uD(v)n), =0
on T for 2/p+1/g<1,and veB, ;""" (Q) for 2/ p+1/g>1. In particular, by (8.4), u,—u|_,eD, () provided that
2/ p+1/g+1.Thus, v=T(¢)(u,—ul,_,) isa unique solution of Eq. (8.8) with v, =u,-u|,_, and by (8.12) we have

—yt
He’v

Ly @@y | He_yt ’V"Lp (0.).Lg () 3 C(llu"llBr?,(}f””(Q) +u |’=°||B§,(;'f””<9>)'

By real interpolation, we know that

).

+ "e“’ ‘O,u
L ((00).L (Q)

_ < X “
Hu ":0”33,(}; Py = C(”e & Ly ((0.0),H (€2))

Thus, by (8.7)

”V”LP (0.7).H2 (©) w ||6fV||Lp (0.7).Lg ()

7T —7t
<Ce (Huouﬂéf};“")(m + HFHLp«o,T),Lq(Q» * He (G’H)HLP<R,H}, @)
—yt —yt
* He (G’H)HH},/Z(R,L,,(Q)) + He atGHLp(R,Lq(Q))}

This completes the proof of Theorem 8.2.
We now study the equations:

0,y —Div(uD(v) - pI) =0, divv=0 in Qx(0,T),

0,p+A, - Vep-v-n+F v=F on T'x(0,T), (8.13)

(uD(¥) ~g1-((B +3Ar)p)Dn =0 on I'x(0,T), '

(0, 9) |,—=(0,0) in QxT.

We shall prove the following theorem.

Theorem 8.3: let 1< p,g <o and 7> 0.Assume that the conditions i—iv stated in Theorem 1.7 are satisfied. Then, for any
F eL,((0,7),w,;"4(I)), problem (8.13) admits solutions v and p with

velL,((0.7),H; (") H,((0,7),L, ("), peL,(0.T),H,(Q)H,((0,T),H; ()

possessing the estimate:

®
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Ve, 0052000 10, 0.1 20000 WAL, 001200 10PN 0.1 12 0
< CeroT "F"Lp «O’T)’qufl/q(r» .

Proof: Let F, be the zero extension of F outside of (0,7) and we consider the equations:

o,v—Div(uD(v)—pl)=0, divv=0 in QxR,
0,p+A,-Vep—v-n+F v=F, on I'xR, (8.14)
(uDW)—gI —((B +0Ap)p))n=0 on I'xR.

Let £, be the Laplace transform of F, and let A(1), P (1) and H (1) be the operators given in Theorem 1.7. Then, v
and p are given by

v=LTTA(DEFA), p=L7'[P(ADEFA)], p=L""[H(DEFA],
where Eﬁo(i) = (0,17})(1),0,0,0,0,0) . Applying Theorem 1.7 together with Weis’ oprator valued Fourier multiplier theorem

gives?
veL,, RH; Q") NH, ,(RLQ"), pel,, [RH(Q)+H,,(Q),
peL,,(RH(Q)NH,, (R,H(Q),
and
||ei}/tv||[‘p(R,H,§(Q)) i "ein tv"Lp(R,Lq(Q)) " 77tp||Lp(R,H2(Q)) 4 "eiﬂ(a’p"/‘p(R,Hg(Q))
< C||e‘V’F0 ||LP(R)W(]2,1/4(F» <C|, @2y (8.15)
forany y>cy, . Since |y/A<1 for A=y +ireC, we have
}/"e_}/tV"LP(R,Lq(Q)) & C"e_}/tatV"Lp(R,Lq(Q)) 1 (8.16)
el <cle o

Lp (R,qu’”q(r)) Ly (]R,W(}’”q ay’

Combining (8.15) and (8.16) gives

—yt

+ "3_7 ‘p

"V"Lp ((=0,0),L4 (Q)) H "p"Lp((—w,O),Hg(Q)) 2 "e Ly (R,Ly (Q)) |LP(R,H3(Q))

<7 (e7on] 2] <cr ey,
<y (le”o,v +|le””0,p LP(R’H‘%(Q»)_C;/ "F"Lp((o,r),qu 4 1))

Lp(R,Ly ()
=0, Which leads to (v, p)|,-,=(0,0) . This completes the

Letting y -, wee see that |v|, =lol, o n2
proof of Theorem 8.3. Lp (0,014 (@) Ly ((=0,0, HZ(Q)

We finally study the initial problem:

0,y —Div(uD(v)—pI) =0, divv=0 in Qx(0,T),
0,p+A,-Vep—v-n+Fv=0 on I'x(0,T), (8.17)
(D) - pI-((B +Ar)p)Dn=0 on I'x(0,T),

(v, P) ,=9= (0, 0) in QxT.

We shall prove the following theoorem.

Theorem 8.4: let 1< p,qg <o . Assume that the conditions ii—iv stated in Theorem 1.7 are satisfied and that Q is a
uniformly C* domain whose inside is finitely covering. Then, for any p, B, ,'”""%(T), problem (8.17) admits unique

solutions v, p,and p with
Ve L, ,((0,0), H} QY)Y H), 1, ((0,0),L ("), peL,, (0,0),H)(Q)+H, (),

P EL, . ((0,0), Hy(Q) N H), 1, ((0,0), H, (Q))
possessing the estimate:
HVHLp (.T).H2 () + HafVHLP (O.T).Ly () + HPHLP (.7),H () + HatpHLp((o,T),H,%(Q))
<Ce’'y, ||P0||B;;l/ Py

forany T e(0,00) and y>cy, .

©)
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Proof: First we consider the case where & =0. The corresponding resolvent problem to Eq. (8.17) is

Au —Div(uD(u) — K(u,h)])= f in Q,
Ah+ A, -Vih-u-n+Fu=g on T, (8.18)
(uD(v)n), =0, divu=0 on I'.

Where, K(u,h) is a unique solution of the weak Dirichlet problem:
(VK (u,h),V@), = (Div(uD(u)) - Vdivu,Vg), for anype IZI;,’0 (Q),
subject to K (uh) =< uD(uwn,n>-(B +Aph—diva on T'. We know the existence of K(u,h)e H,(Q)+H,,(Q) for
ue H(Q)" and heW, () possessing the estimate:
HVK(u’h)HLq(Q) < C(Hvu“yb(n) + HhHW,;’”q(r))'
Let
— 2-1/
H, ={@.h)ueJ (Q),heW I)},
_ 2 3-1/ _
D,={(u,h)eH (Q)|ue H(Q),helW, (I),(uD(u)n), |-= 0},
A, (u,h) = (Div(uD() — K(u,h)]),(un—F u)|) for(uh)eD,.
And then, problem (8.18) is written as
Au,h)—A,w,h)=(f,g) in QxT. (8.19)
And also, the corresponding evolution equation is written as
0,(v,p)—A,(v,p)=(0,0) for t>0, (v,p) o= (u,P0) (8.20)

with p=K(v,p) and u, =0, where v eD, for +>0. By Theorem 1.7 and Theorem 1.11, we see that there exists a 4, >0
suchthatforany 1€X,, and (f,g)eH, (), problem (8.19) admits a unique solution (u,) e D, possessing the estimate:

|2, +lml, =Cldel, -
Where, we have set

H(u’h)"Hq :"uHLq(Q) +"hHWqZ’”q(r)’ H(u’h)"Dq :HuHH‘%(Q) +Hh"W,}”’”"(r)'

Thus, A, generates a ¢, analytic semigroup {T(r)},,, associated with Eq. (8.20) possessing the estimate:
"T(t)(fag)"Hq(Q) < Ce™ "(f’g)"Hq(l')

forany />o0.Letp, ,=H,.D,)), ,,, Where (.9, , is arealinterpolation functor. By real interpolation method, we see
that for any (u,.p,) D, , . Problem (8.20) admits a unique solution (v, p) = T(¢)(u,,p,) POssessing the estimate:

—yt
e 76,\/"

< C(lluollsgf},’”l’)(n) + ||p0||W;’;,”P’”‘1(r))'

R | el
e + +|le
" Ly (0.),HZ () »

+leran

Ly ((0.0).Ly () Ly (e (D)

Lp (w24 ()

Since Q is a uniform ¢’ domain, we can construct an extension, p, of p to Q such that p|.=p,
~ 3 1 2

PE Lp,loc((o,oo)qu (Q)) me((O,OO)qu (Q)) ’ and

18], 0. 1530000 < ElPle, 0 rrm3 10y

HalﬁHLp .7),HZ () = CHaszLp w1y
where C is a constant independent of 7' . We write 5 simply by p . Since (0,,) D, , for p, € B;,'"""(I'), we then have
Theorem 8.4 in the case where ¢=0.

We next consider the case where o <(0,1). Let (v,,p,,/) be a solution of Eq. (8.17) in the case where & =0 possessing
the estimate:

HVIHLp ((O,T),Hg(Q)) + HazleLP((o,T),Lq(Q)) + leHL,, ((O,w),Hg(Q))

+ "atpl ||Lp ((0.0), H2 () <ce! ||p0||W;’;}/p’l/q(r)
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forany y > 4,, where C is independent of y > 4, . Let (v,,p,,p,) be a unique solution of the equations:

0,v, —Div(uD(v,)—p,1) =0, divv,=0 in Qx(0,T),
0,0, + A, Vep,—vy-n+F vy,=—A4_-Vip on I'x(0,T),
(UD(v,) ~ ]~ (B +3Ap)py)Dn =0 on Tx(0,T),
(V2202 |i—o= (0.0) in QT

By Theorem 8.3 and (1.3), we know the existence of v,, p, and p, with
v, € H((0.7), L, (") "L, ((0.T), HJ ("), p, €L, ((0.T),H,(Q)+H, (),
Py e H) 1, ((0,00), HI(Q) N L, ((0,00), H, ()

p,loc p,loc

possessing the estimate:

IVl v m2c0n +10:¥2 ], 010200 122l 0 3000 0PN 0.0 12

< CechT "Ao* P "Lp ((O,T),qu‘”‘l(r)) < CeCVUTO:b "pl"Lp ((O,T),W;_]/"(r))

<Ce o | oy pvio-ia

for any >4, . Without loss of generality, we may assume that 4, <co™, because o <(0,1) and b>0. Thus, setting
v=v,+v,, p=p +p, and p=p +p,, weseethat v, p and p are required solutions of Eq. (8.17).

Applying Theorem 1.11 to the Laplace transform of solutions of the homogeneous equations, we have the uniqueness of
solutions of Eq. (8.17). This completes the proof of Theorem 8.4.

Proof of Existence part, theorem 1.9: Let v,, p, be solutions of Eq. (8.1), let v,, p,, p, be solutions of Eq. (8.13) with
F=D+v,-n—F v,,andlet v;, p; and p, be solutions of Eq. (8.17). Setting v=v,+v,+v;, p=p +p,+p, @aNd p=p, +p;,
we see that v, p, and p are required solutions of Eq. (1.6).

Proof of Uniqueness, theorem 1.11: Let v, p, and p be solutions of the homogeneous equations:

0,v—Div(uD(v) - pI) =0, divv=0 in Qx(0,T),

0,p+ A, -Vrp—v-n+F v=0 on I'x(0,T), (8.21)
(uD(v)—pl—((B +A)p)hn=0 on I'x(0,T),

¥, P) |,=o=(0,0) in QxT,

with
Ve L,((0.7), Hj(@") N H,((O.T), L"), peL,(0.1),Hy(Q)+Hy (),
p € L,((0.7),Hy(Q)) N H,((0.7), Hy (€)).
For any f defined on (0,7), let E[ /] be an extension of f outside of (0,7) defined by setting

0 for t<0,

E[fl®)=4 f()  for te(0,T),
f(,2T—1) for te(T.2T),

0 for t>2T.
If 71, ,then
0 for t<0,
QEfID) =7 (@) for te(0,T),
(0, /)-2T —t) for te(T2T),
Thus, 0 for t2T.

E[vle H)(R,L,(Q)")NL,(R,H ("), E[pleL,(R,H(Q)+H, (),

E[ple H,(R,H;(Q)NL,(R,H, ().
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Moreover, by Eq. (8.21), we see that

8,E[v]—Div(uD(E[v]) — E[p]) =0, divE[u]=0 in QxR,
0,E[p]+ A, -V E[p]—E[v]-n+F [v]=0 on xR, (8.22)
(UD(EVD = [pI1=((B +AR)[pDDn =0 onI'xR.

Let u=L[E[V]II(A), g=L[E[p]I(A),and h=L[E[p]](4). Since E[v], E[¢] and E[p] vanish outside of (0,7), u, ¢, and
h are entire functions. By Hdlder’s inequality, we have

T _ T _ , ’
lullz o) < [, "e M"("’)"Hg(m (e an'y Mz, 0.1, 9 <

and so ue H,(Q)" . In the same way, we see that g H,(Q)+H, ,(Q) and he H (). Morevoer, applying the Laplace
transform to Eq. (8.21), u#, ¢ and h satisfy the homogeneous equations:

2Av—-Div(uD(v)—gl)=0, v=0 1in Q,
Ah+ A, -Vih—u-n+Fu=0 onT,

(uD(u)— gl —((B + A )R)Dn=0 onT
forany 1 eC. Thus, the uniqueness of the resolvent problem yields that « =0, ¢=0 and #=0. Thus, applying the inverse
Laplace transform, we have E[v]=0, E[p]=0 and E[p]= 0, which implies that x =0, p=0 and p=0. This completes the
proof of Theorem 1.11 2.

- - - N

On the weak Dirichlet problem in &* and ®-

In this appendix, we prove the unique existence and regularity theorem for the weak Dirichlet problem in the model cases.

The rR" case
In this subsection, we consider the following weak Laplace problem in RV :
(Vu,Vo)_y =(f.Ve), y foranype AL (RY). (9.1)
We shall prove the following theorem.
Theorem 9.1 Let 1<g<ow. Then, for any feLq(RN)N, the weak Laplace problem (9.1) admits a unique solution
ueH)(R") possessing the estimate: "VuHLq(RN) < CHfHLq(RN) )
Moreover, if we assume that divf e L (R") in addition, then v’y eLq(]R’V)"’2 and
"VzuHLq(RN) < Clldinlqu(RN).
Proof: To prove the theorem, we consider the strong Laplace equation:
Au=divf in RN, (9.2)
Let
Hy (D)= 1{f € L,(D)" |divf € L (D)},
where D is any domain in R" . Since ¢y (R")" is dense both in L (RY)" and H, ., (R"), and so we may assume that
feCr RN . Let Ff]=7 and F "' denote the Fourier transfom f and the Fourier inverse transform, respectively. We

then set i'é F LI
iEF[f,
Y Y Y- i

[ ]

1€ &7
where we have set f=(f,.,...,fy)" . By the Fourier multiplieara theorem we have
“VlleLq(uaN) < CHfH.Lq(]RN) ’ 9.3)
HV uHLq(]RN) < CHdeHLq(RN)'

Of course, u satisfies Eq.(9.2).

We now prove that u satisfies the weak Laplace equation (9.2). For this purpose, we use the following lemma.
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Lemma 9.2 Let I<g<x and let

B (1+] x )2 for N#q,
! 1+ x )" log(2+ | x )2 for N=q.
Then, forany ¢ e FI;(RN) , there exists a constant ¢ for which
o-
< C"V(""LqRN)
4 Ny ")

with some constant independent of ¢ and c.

Proof: For a proof, see Galdi [Chapter II].* To use Lemma 9.2, we use a cut-off function, i, , of Sobolev’s type defined as
follows: Let ¢ be a function in C*(R) such that w(r)=1 for |¢|<1/2 and w(¢1)=0 for |¢[>1, and set

_ Inln|x|
Yr(x) "/(T nR )-
Notice that

|VV/R( )I > Suppv'//RCDR’ (94)

1
In 1nR\x|ln| |
where we have set D, = {xeR" \em <|x|<R}. Noting that f ey @®)", by (9.2) for large R>0 and (peI:I;r(RN) we

have
EVe) v =(EV(@=0) x = ~(divf.p—c) y =—~(ypdivf,p—c) y =~(yrAu,p—c) v
(9.5)
=((VyR)-(Vu),p =) y + WV, V) .,
where ¢ is a constant for which
Qp—c
. < C"V(/’"L (@Y (9.6)
7 g ®™)
By (9.4) and (9.6), we have
¢p—c
(V) (W= | <[d,(Vya)- W), v 5
7 Ny @) (9.7)

C

< In lanlvu"Lq (DR) ||V¢’"Lqr(]RN) —0

as R— . By (9.5) and (9.7) we see that u satisfies the weak Dirichlet problem (9.1). The uniqueness follows from the

existence theorem just proved for the dual problem. Moreover, if divf eLq(RN) in addition, then V2u eLq(]R"’)"’2 , and so
by (9.3) we complete the proof of Theorem 9.1.

The half space case
In this subsection, we consider the following weak Dirichlet problem in RN :

(Vu.Vo), y =(f.Ve),y foranyp e Hyo®RY). (9.8)
We shall prove the following theorem.

Theorem 9.3 Let 1<g<ow. Then, for any fel (RN)N the weak Laplace problem (9.8) admits a unique solution

uel:ll(RN) possessing the estimate: HVMHL &Y < chHL &) -
+ q U+

Moreover, if we assume that divf e L (RY) in addition, then V’ueL (]RN) and

||V2“"L ®Y) —C"de"Lq(M )

Proof: We may assume that £ =(f,,... fN)O e C7(RYM)Y in the following, because Cy(RY) is dense bothin L (RN) and

o H) ., (RY) . We first consider the strong Dirichlet problem:

Au=divf inRY, ul|. _,=0. (9.9)

For any function, f(x),definedin RY  let f¢ and f° be the even extension and the odd extension of f defined in (4.40).

xny =0

Noting that (divf)’ = Zi:laj(fj)” +0y(fy)°, we define u by letting

©)
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N-1
2EF ()" UE) +i&F () 1)

=-F [ :
&P : : &P :

-1 F [(divf)*1(6)

u=-F [

We then have

[Vl (9.10)

L, (®Y) 1g®Y)”

<l @D, V2], v, < Claivr]
and moreover u satisfies Eq.(9.9).

We next prove that u satisfies the weak Dirichlet problem Eq.(9.8). For this purpose, instead of lemma 9.2, we use the
Hardy type inequality:

(S a1 an'? < (pln(, ren vy an'”, (9.11)
where >0, p>1 and >0 (cf. Stein [A.4 p.272]).#5 Of course, using zero extension of f suitably, we can replace the
interval (0,:0) by (a,b) forany 0<a<b<oo in (9.11). Let Dy, =1{xe RY | R < x|<2R} . Using (9.11), we see that for any
peHy,(RY)

. -1 —
tim R ol ) =0 (9.12)

In fact, using ¢|,, -,=0, we write p(x',xy)= j O,p)(x',5)ds . Thus by (9.11) we have

NN de<( )qj | @v)(x,xy) [ dy

xy=0"

forany 0<a<b. Let
Ep={xeR"|x'|<2R, R/2<xy <2R}, E;={xeR"|0<x, <2R,R/2<|x |<2R},
and then Dy ,, < Ep U E; . Thus, by (9.11),
4 gy)e’
[y |27 )

Rq' 2R . i
<] [ loxo vy + [ [ |0yp0) [ deyax'y'?
. |x'|<R R/2<|x|<2R
which leads to (9.12).

Let w be afunctionin Cy'(R") such that o(x)=1 for | x|<1 and ¢(x)=0 for |x[>2, and we set w,(x)=w(x/R) . Forany
peH, ,(RY) and for large R>0, we have
(divt,p) v = (@ divE,0) y = (@At,0) y =~(Va)- (V) y —(@VU,V ) . (9.13)
+ + + + +
By (9.12)

(Vo) (V) n KRV, o b,

(DR2R)

as R — . On the other hand, (divf,p) v =~(f.Vp)_y , where we have used f CyRYYY . Thus, by (9.13) we have
+ +

(Vuav¢)R1+V = (f}V(D)RiV
for any peH, ,(RY). This shows that u is a solution of the weak Dirichlet problem. The uniqueness follows from the
existence of solutions for the dual problem, which completes the proof of Theorem 9.3.

Regularity of the weak Dirichlet problem
In this appendix, we shall prove the following regularity theorem for the weak Dirichlet problem.

Theorem 10.1 Let 1<g<w. Let Q be a uniform C? domain. Given feL, @Y, let ueH1 0(€©) be a unique solution
of the weak Dirichlet problem (1.10) possessing the estimate: ||Vu||L @ <C||f||L « - If we assume that divf € L,(Q) in
addition, then V?u e L (Q) and

(aivel], @+l @)

V2u||
" Lq(Q) Ciyq

Proof: Let {j (i=0,1,j e N) be cut-off functions given in Proposition 6.1. We first consider the regularity of g“j(.’u . Let

¥ =cj(¢) be a constant in Lemma 6.6 such that
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"u—cO"L %~ 1"Vu||L 3 (10.1)

Forany ¢ H) (R"), we have
V& =D)LV y = (VEDU =)LV )y + (Vi V(&P = (Vi) (V7))
= (AL ~c))+2(VED) - (Vu)+ S 3div [ )y,
where we have used (Vu,V({79) v = (£.V(79) v =—~(CdivE.4) v
Let f=(ALD)wu—c)+2(VEY)- (Vu)+¢Jdive . Since i (RY) < H)(RY), for any ¢ e Cy (RY) we have

(A=) =(fo8) x s
which yields that
A u=c)=f in RN (10.2)
in the sense of distribution. By Lemma 6.6, f e Lq(RN) and
"f"Lq(RN) < C("din"Lq(B?) i "Vu"Lq(B?))' (10.3)
From (10.2) it follows that
akazA(g;)(“ - C?)) =0,0,f

for any k, ¢eN. Since both sides are compactly supported distributions, we can apply the Fourier transform and the
inverse Fourier transform. We then have

St E [ rye))

0,0,(& =) =F *‘[‘f|

By the Fourier multiplier theorem, we have

||8k6 (C (u—c; ))" |f||L ®Ny"

L, (]RN

Since 8,0,(¢(u—c)= 00,0+, +(8,57)0,u+(8,0,£7)u~ch), by (10.1) and (10.3) we have ¢;VueL (RY)Y
and

et o < Cudaivel, o, +I0ul, ) (104)

L, (@)
We next consider g}u .Forany ¢e I—AI;,)O(QJ.) , we have
(V1) Vha, = (&Pa, (10.5)

where we have set g =—({divf +2(Vu)- (V) +(AS))u) . By Lemma 6.6, geL,(Q;) and

"y"Lq(Qj) < C("din"Lq(Qr\B}.) + ||Vu||Lq(Qr\B}-))' (10'6)

We use the symbols given in Proposition 6.1. Let «,, and b,, be the (k,/)" component of NxN matrices A, and B,
given in Proposition 6.1. By the change of variables: y=® (x), the variational equation (10.5) is transformed to

z((% + A,)0,v, al¢) =(h.9) - (10.7)
k,t=1 i
Where, we have set
v=yluo® ), h=go®;, J=det(A, +B,)=1+J",

N
A = Z{aé‘mbkm +ap,Joag, + b)) + by, J (@, + by}

m=1

By Proposition 6.1 and (10.6), we have
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"AM"LOO(RN) <CM,, "VA“"LOO(RN)SCK’

. (10.8)
||h||Lq ®Y) < C("dIVf"Lq(B} ~oy T "Vu"Lq(B} mQ))’

where C, is aconstantdepending K, « ,and g appearing in Definition 1.1. Since squcCD"(B})m]Riv , by Lemma 6.6

|(h’¢)RiV < "h"Lq(B}nR’j)||¢"Lq,(3}.nmﬂr") < C"g"Lq(B}-me)"V¢"Lqr(Ry)

for any ¢eH1 O(R ), where C is a constant independent of jeN. Thus, by the Hahn-Banach theorem, there
exists heL (RY)" such that ||h||L =) C||h||L @ogyy AN (V) =(hg),y for any fe A o(RY) . In particular,
divh=-helL (]RN) Thus, the varlatlonal problem (10 7) reads

Z((ék(+AM)6kv, By =(h$) . for anyg < i (BY).

k,/=1

We now prove that if M, €(0,1) is small enough, then for any ge L (R} VMYV there exists a unique solution weH O(R )
of the variational problem

N
D (@it A2 ),y =(8.99),y  foranyg < Hig (®Y). (10.9)

=
having the estimate:
"VW"Lq(RiV) SC"g"Lq(RﬂrV)' (10.10)

Morevoer, if divge L, (R}), then Vwe H (R))" and

V2W||Lq<Rff> < C||divg||Lq @+ Cx ||g||Lq &) (10.11)

In fact, we prove the existence of W by the successive approximation. Let w, eI—AI;’O(]Rﬁ’) be a solution of the weak
Dirichlet problem:

(V. V) v =(&.Vg),y  foranyg e HL o (RY). (10.12)
By Theorem 9.3, w, uniquely exists and satisfies the estimate:

||VW1||L ®Y) SC"g"L ®Yy (10.13)

Moreover, if we assume that divge L, (R ) additionally, then Vzwl eH‘ (R )V and

v WIHLq(Rgv) <Clive], e, (10.14)
Given w, e H ,(RY), let w,,, € H} ((RY) be a solution of the weak Dirichlet problem:
(V9,0 V9) oy = (& V9) Z(Akfak 0,),y for anyg e Hy (RY). (10.15)
kt=1 *

By Theorem 9.3 and (10.8), Wi exists and satisfies the estimate:

" il L&Y~ ("g"L @, )M "VW ||L (IRN (10.16)
Applying Theorem 9.3 and (10.8) to the dlfference W, —w;, we have
[0t =], e, < T8 =], (10.47)

Choosing CM, <1/2 in (10.17), we see that {w;}’_, is a Cauchy sequence in I—AI;’O(R':’) , and so the limit we H O(R )
exists and satisfies the weak Dirichlet problem (10.9). Moreover, taking the limit in (10.16), we have

"vw"Lq(R’f) < C||g||Lq(Q+) +CM, ||VW||Lq(R_{Y)'

Since CM, <1/2, we have "VW"Lq(Rf) <2C|g| . Thus, we have proved that the weak Dirichlet problem (10.9) admits

1,(0)
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at least one solution we ﬁ;’o(gg possessing the estimate (10.10). The uniqueness follows from the existence of solutions
to the dual problem. Thus, we have proved the unique existence of solutions of Eq.(10.9).

We now prove that Vwe Hy(R})" provided that divge L (RY). By Theorem 9.3, Vw, e H,(R})" and w, satisfies the
estimate:

2
"V W1||Lq(RN —C"leg"H‘ I
Moreover, if we assume that Vzwj eLq(Rﬁ\f)N in addition, then applying Theorem 9.3 to (10.15) and using (10.8), we see
that V2w, e L, (R¥)" and
[

s < Cldive, g, + CM, [V (10.18)

el e,
Wi @y TR @l

And also, applying Theorem 9.3 to the difference w
[v2 0w =)

which, combined with (10.17), leads to

—w; and using (10.8), we have

+Cy ||V(wj —wj,1)||Lq(R1+v),

]+1

<M, V2w, -

Ly &Y Wi 1)"L ®Y)

"V (Wt — |V(wj -w

)"L ®Y) | f‘l)"Lq(Ri\’)

SCM1||V2(wj—w

]._1)||Lq(M) +C(Cy + M|V (w,., -

Wi~ 2)"L ®Yy"
Choosing M, >0 so small that CM, <1/2 and (Cy +1)M, <1/2, then we have

||V( Wi w)" +[vow, - <(1/2)7'L

L, &Y) f‘l)"Lq(M )

with L= ||V2(w3 —w2)|| +|V(w, —w1)||Lq(R% . From this it follows that {V*w;}", is a Cauchy sequence in L (Q), which

L (RN

yields that V’we L (]R ) . Moreover, taking the limit in (10.18) and using (10.10) gives that

7y, < CHvel e, + /D], gy, +Collel e

which leads to (10.11).
Applying what we have proved and using the estimate:
"di"h"Lq(u%irV) + "h"Lq(RQ’) < Cllhlqumi\') < C"di"f"qu}) +"V”"Lq(3}.) ’

which follows from (10.8), we have Vv=V({ju-®,)e H,(R})" and

[V e @l g, < CU I, ity + 192, o
Since ||u||L (8o <q ||Vu||L (B 3 follows from Lemma 6.6, we have

32, o, <Caivt],
Combining (10.4), (10.19) and (6.5) gives

[Vl o = €At 0 V01, ) = CRA, )+ 18], )
which completes the proof of Theorem 10.1.

) ®Y)

+|va,, (10.19)

1@ (B9 o)

A proof of Lemma 7.5
In this appendix, we shall prove Lemma 7.5. Namely, we prove the following lemma.

Lemma 11.1 Let 1<g <o and let Q be a uniformly > domain whose inside is finite covering. Let O be a set given in
Definition 7.1. Then, we have

agl
||¢||Lq ©) < Cq,S "Vq’"Lq (Q) for anyg < Hq,O )
with some constant C,, depending solelyon O and g .

Proof: Let O, (i=1,...,1 ) be the sub-domains given in Definition 7.1, and then it is sufficient to prove that
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||(/7||Lq o < C"Vgo"Lq(Q) for anyp € H_ ((Y)and i=1,... K.
If O, cQ, forsome R>0, since ¢|.=0, by the usual Poincarés’ inequality we have

||¢||Lq(ol-) < "‘/’"Lq @p) S C"V‘/’"Lq g foranyge I:I}LO(Q)'

Let O; be a subdomain for which the condition b in Definition 7.1 holds. Since the norms for @(A -z(y)) and ¢(y) are
equivalent, without loss of generality we may assume that

O, c {x=(,xy)eRY [a(x')<xy <b, x'eD}cQ
{x="xy)eRY |xy =a(x') x'eD}cT.
Since g€ 1:1;,0(0) , We can write
o) = [V 0,00 )ds.
because ¢(x',a(x")) =0 . By Hardy inequality (9.11), we have
b ' q .—q 1/q b N ! 9,9 1/q
([ O 20 [ i) < ([ ([ 10,0)(x9) [ds) i diny)
7679 ] l/q
q+1(L< 158,00 5)[7 57 ds)
and so, by Fubini’'s theorem we have
’ b ’
(o, oG ) < ([ [, 190 xy) aly)!

& ) e b b
< (Ipdx Ia(x') [o(x', xy) |7 b7 de)l/q < #(j‘pdx J‘a(x’) [Oyp(x) [ de)l/q

qb
= T"V¢"Lq «@"
This completes the proof of Lemma 11.1.
Remark on a proof of Proposition 6.1
In Enomoto-Shibata®” [Appendix], instead of ||V(B’ B! )"L &Y < Cy , it was proved that

J2I

7.8,

thatis the estimate of V(B}, B} ) dependson M, . We shall give anidea how toimprove this point below. Let x, = (x, %,y ) €T
and we assume that

QN By(xy)={xe RY| Xy > h(x')(x" € By, (x¢)} N By(xp),

FNBy(xg)={xe RY| Xy = h(xX')(x" € By, (xg )} N By (x,)-
We only consider the case where k =3 . In fact, by the same argument, we can improve the estimate in the case where k=2

3 ’

. We assume that h e C*(B.,(xy)) , ||h||HgO(B&(XOV))
K, a and g butindependent of ¢. Let p(y) be a function in C7(RY) such that p(y)=1 for |y'|<1/2 and |y, [<1/2
and p(y)=0 for |y'21 or |y, [21.Let p.(»)=p(y/e). We consider the C* diffeomorphism:;

<K ,and x,y = h(x,).Below, C denotes a generic constant depending on

x;=®%(y)= x0/+zt/kyk+ Zs/kfyky/pg(y)
ko=l

Where, ¢, , and s;,, are some constants satisfying the conditions (12.3), (12.1), and (12.2), below. Let

G (1) =DH ()~ AP (¥),-.. DT (V).

Notice that G,(0) = xoy —/(x;) =0 . We choose ¢, , and s, ,,, in such a way that

s oy=1, -3 (x v 20, e 0)=4 —Nzlﬁ(x Y, =0 (12.1)
Oyy v =1 CTEN oy, N =1 0% Ok '
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2

2°G & on & oG
—<E (0)=ys +5 -y ——(xy)(s; ,, + 5 - £ _(xp)t; b, =0. 12.2
ay/@ym ( ) N,im N,ml ]; an ( 0 )( k,tm k,mf) j’kz:l axjan ( 0) J. L k,m ( )
Moreover, setting
by Ly oy
t t P t
T= 1.,2 2.,2 N N2
tl,N t2,N tN,N
we assume that T is an orthogonal matrix, that is
N 1 for m=n,
Dlinltn = O = (12.3)
= 0 for m#n.

We write %(xo') simply by #; and set H, = /1+z;v=_jlhf =\/1+hf. +h e+ by . Let
J

hy-; hy-ihy-;
Iy = iy gy = (k=1,...,j 1),
DO Hy Hy, T Hy Hy
HN+1

L, ey =0k=1,.,N-j-1)

h; 1
for j=1,....N-1, and ¢, y =———(=1,....,N=1), tyy=—:
] N A, ( ) NN H,
Then, we see that such ¢, satisfy (12.1) and (12.3). In particular,
oG 0)= L (12.4)
ayN Hl
Moreover, assuming the symmetry: s, ; =s, ,; , we have
1 & o h G ok
Sy g =—— ——— (Xt itk S =—— —(xp)t,, ity i
N, jk 2H2 m,;:l aXmax’l ( 0 ) m,j nk Lk 2H12 et ax'nax" ( 0 ) L, jink

By successive approximation, we see that there exists a constant &, >0 such that for any ¢ € (0,¢,) there exists a function
v, € C3(B;(0)) satisfies the following conditions:

v (0)=0y,.(0)=0,0,y,.(0)=0,
2
"%"Lw(sg o) SC€ ’"ai“’glle(B:g(on = C8’|6faf‘/’e L B C’"aia./ak‘/’e Lo (B )
G,(V.y,.()=0 for y'eB,(0), (12.5)
where i, j and & runfrom 1 through N —1. Notice that
1
Xy — hg(-x') = Gg(J/) = Gg(y’aw.e (y')) + IO(aNGs)(y,>y/£ (yl) + e(yN -V, (y')))dg(yN -V, (y'))
= @nG)O)+G,(Myy —v. (), (12.6)
where we have used G,(',y.(»"))=0 and we have set
~ el i 2 r r
G, ()=, J 2 @G Ty, () + 6y =, (¥,
=1

-1

+08G, 0y 1, (V) + Oy =¥, (W, () + 0y =, (V) dOdz.
Since (0yG,)(0)=1/H,, choosing &,>0 so small that |G€(y) I<1/(2H,) for |yl<¢,, we see that x, —A(x)>0 and
vy —w. ()20 are equivalent.
Let » be a function in cz®" ") such that w(y")=1 for | y'|<1/2 and w(y")=0 for |y [>1 and set v, ()=, () ()'/¢&).
Then, by (12.5) we have

||a)g "Lw(RN—l) <Cé?, %(RN71)§ Cg,"aia)g ||

||aiang <Ceg, ||aiajaka)g (12.7)

-1
N1, <Cs .

Lo RV Lo (R
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where i, j,and k runfrom 1through N -1. Setting ¥*(z) = ®°(z',zy + @.(2) , thatis yy =zy +.(z"),and y, =z, for
j=1,...,N -1, we see that there exists an &, >0 such that for any ¢ e(0,s,) , the map: z - x=Y¥?(z) is a diffeomorphism
of €3 class from R" onto R" . Since

where we have set
0 ow,
a(sm,g,«y,»yjpg(y))} oz,

0 N ,
e a(sm,f,y,-y,pg(y))utmw + @),

ij=1 ij=1
b,y = Z

i,j=1

3
P )
oy (80,5215 ;P ())

let A and B bethe Nx N matrices whose (m,n)" components are tw, @nd b, .,
orthogonal matrix and B satisfies the estimates:

Bz, <€z VB

respectively. Then, by (12.7), A isan

c. v

Lo(®Y)

-1
Lw(]RN )SCE .

Lo (RN
Moreover, by (12.6) we have

Xy =h(x) = (1 H, + G, (Z,zy + 0, (Z))zy + (@(z'/ &) =Dy, (2),
which shows that when |z'[<&/2, xy >h(x") and zy >0 are equivalent. We can construct the sequences of C;°(R")
functions, {g’j} , {g;}} , by standard manner (cf. Shibata et al.*” [Appendix]). This completes the proof of Proposition 6.1.46748
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